
USER MANUAL
FlexScan3D
Document revision: A

FlexScan3D User Manual 2

Copyright
Copyright © 2015 by LMI Technologies, Inc. All rights reserved.

FlexScan3D, LMI Technologies, the company logo, and all product logos are trademarks of LMI
Technologies. Other than to identify this software and publication, individuals or organizations
purchasing the software are not entitled to use LMI Technologies' trademarks without the written
permission of LMI Technologies.

All other trademarks and names mentioned herein are the property of their respective owners. No part
of this document may be reproduced in any form without the written permission of LMI Technologies.
The content of this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by LMI Technologies. LMI Technologies assumes
no responsibility or liability for any errors or inaccuracies that may appear in the informational content
contained in this document.

No warranties of any kind are created or extended by this document. Any products and related material
disclosed in this document have only been furnished pursuant and subject to the terms and conditions
of a duly executed agreement to license the software. Any warranties made by LMI Technologies with
respect to the software described in this publication are set forth in the License Agreement provided
with the software. LMI Technologies does not and will not accept any financial or other responsibility
that may result from use of the software or any accompanying material including, without limitation, any
direct, indirect, special, or consequential damages. For more definitive information, consult the License
Agreement.

Contact Information
For more information, please contact LMI Technologies.

LMI Technologies, Inc. 1673 Cliveden Ave.
Delta, BC V3M 6V5
Canada

Telephone: +1 604 636 1011
Facsimile: +1 604 516 8368

www.lmi3D.com

FlexScan3D User Manual End User License Agreement • 3

End User License Agreement
LMI Technologies SOFTWARE END USER LICENCE AGREEMENT

By agreeing to have any of LMI Technologies Software Products installed on to your computer
equipment and by subsequent use of the Software, you agree to comply with the terms of this general
End User Licence Agreement (“EULA”) where no specific agreement is in place between LMI Technologies
and the user of the software. If you do not agree to the terms of this EULA, do not install or use the
Software but return it for a full refund. This EULA applies to any upgrades and supplements to the
original Software provided.

1. The Licensed Software is owned and copyrighted by LMI Technologies. The Software is licensed, not
sold, only on the terms of this EULA. Acceptance and installation of the software indicates your
acceptance of the terms and conditions of this EULA.

Upon receipt and installation of the software and payment of the licence fee, you will acquire the right to
use the Software in object code form, directly from LMI Technologies although the product may be
distributed by a Value Added Reseller (VAR). You assume responsibility for the selection of the program
to achieve your intended results, and for the installation, use and results obtained from the Licensed
Software.

2. In consideration of your acceptance of the terms and conditions contained in this EULA, LMI
Technologies grants you a non-exclusive license to use the Licensed Software and the associated
documentation for your own needs on one Server. You are not licensed to rent, lease, or distribute the
Software.

3. Title and copyright to the Software, including object code media and documentation, remain with LMI
Technologies. You may not copy, reproduce or make data transmissions, in whole or in part, except as is
necessary for back-up or archival purposes. You may not reverse engineer, translate, disassemble or
decompile the Software, in whole or in part.

4. The licence is effective upon acceptance and installation of the Licensed Software and shall continue
until terminated. You may terminate it at any time by destroying the Licensed Software media. LMI
Technologies has the right to terminate this Agreement if you fail to comply with any term or condition
of this EULA. Upon termination you shall stop all use of the Software and return the Licensed Software
and all copies and documentation to LMI Technologies or destroy the Licensed Software and provide
LMI Technologies with a statutory declaration signed by you declaring that the Licensed Software and
the documentation and all copies have been returned or destroyed and the copy of the Licensed
Software on the hard disk has been removed.

5. Copyright and confidentiality of the Software will survive any termination of this EULA in perpetuity.

6. LMI Technologies warrants for a period of ninety (90) days from the date of delivery that the LMI
Technologies Software object code will perform the functions of the Software as set out in any LMI
Technologies Software Reference Material in effect on the date of delivery.

Except for the warranty stated herein, LMI Technologies disclaims all warranties with regard to the
Software, including the implied warranty of merchantability and fitness for a particular purpose.

FlexScan3D User Manual End User License Agreement • 4

Some Countries/States have laws which require warranty and liability rights different from those stated
herein. In those areas the required warranty and liability terms will apply.

7. LMI Technologies’ entire liability and your exclusive remedy, if the VAR from whom you acquired the
Licensed Software is unable to deliver acceptable replacement media, is limited to your purchase price,
which shall be paid to you upon return of the Licensed Software and the statutory declaration required
above certifying complete return.

In no event will LMI Technologies be liable for any loss of profits, loss of use, or indirect, special,
incidental or consequential damages in any way related to or arising out of the use of the Software. LMI
Technologies maximum liability shall in no event exceed the amounts paid to LMI Technologies for the
Licensed Software.

8. The prevailing party in any action or proceeding between LMI Technologies and End-User Licensee
arising out of or related to this Agreement shall be entitled to recover reasonable legal fees and costs,
including lawyers’ fees, which may be incurred.

9. This Agreement shall be construed and enforced in accordance with the laws of British Columbia,
Canada and each party agrees to be subject to those relevant laws.

Copyright law protects the Licensed Software and accompanying documentation. Except as specifically
authorized in writing by LMI Technologies, copying, duplication, sale, distribution or other use of the
Licensed Software is prohibited.

It is understood and acknowledged that LMI Technologies has the absolute right to obtain injunctive
relief to protect LMI Technologies’ proprietary rights.

By using the Software, you further agree that this is the complete and exclusive statement of the
Agreement which supersedes any proposal or prior agreement, oral or written, and any other
communications relating to the subject matter of this EULA.

If any provision of this Agreement is held to be invalid or unenforceable the remaining provisions will not
be affected.

This software contains Autodesk® FBX® code developed by Autodesk, Inc. Copyright 2010 Autodesk,
Inc. All rights, reserved. Such code is provided “as is” and Autodesk, Inc. disclaims any and all warranties,
whether express or implied, including without limitation the implied warranties of merchantability,
fitness for a particular purpose or non-infringement of third party rights. In no event shall Autodesk, Inc.
be liable for any direct, indirect, incidental, special, exemplary, or consequential damages (including, but
not limited to, procurement of substitute goods or services; loss of use, data, or profits; or business
interruption) however caused and on any theory of liability, whether in contract, strict liability, or tort
(including negligence or otherwise) arising in any way out of such code.

FlexScan3D User Manual 5

Table of Contents
Copyright 2

End User License Agreement 3

Table of Contents 5

Introduction 12

Getting Started 13

System Requirements 13

Installation 13

Activation and Upgrades 18

Activation 18

Installation Key 18

Dongle Key 19

Activating a Dongle 20

Licensing 20

Viewing Your License 20

Upgrading Your Licence 21

Interface Language 22

Setting Up: HDI Advance Scanners 23

Connecting Your Computer and Projector 23

Windows 7 and 8 23

Steps to Get Started on 3D Scanning 25

Setting Up Your 3D Scanning Environment 26

Final Thoughts 26

Adding a Scanner 26

Calibration Overview 27

Scanner Types 27

Duo 27

Single 28

Scanner Type Quick Comparison Chart 28

Step-by-Step Instructions (Video) 28

Single Scanner Calibration 28

Duo Scanner Calibration 28

Configuring the Calibration 28

Capture Settings 28

Selecting Cameras 28

Selecting a Projector 30

Other Settings 30

Selecting the Calibration Board 30

Setting Filters 30

Adjusting Your Equipment 31

Scanner Menu Bar 31

Camera Exposure 31

Exposure Calibration 32

Fine-Tuning Exposure 33

A Note About Aperture 35

Aperture Examples 35

Marker Exposure 36

Setting the Focus 37

Projector 37

Camera 38

Calibrating the Scanner (Advanced Configuration) 38

Point Grey Research (Flea or Grasshopper) 39

Canon 40

Nikon 42

Capturing Calibration Images 43

Examples 44

Good Calibration Images 44

Bad Calibration Images 45

Finishing Calibrating 46

Confirming the Calibration 48

Setting Up a Rotary Table 50

Setting Up the Hardware 50

Using the Software 50

Calibrating the Rotary Table 50

360° Scanning 51

Manual Jogging 52

Setting Up: HDI 100 Series Scanners 53

HDI 100 Series Scanner Configuration 53

Updating the Firmware 53

Network Configuration 53

Adjusting Your Equipment 54

Scanner Menu Bar 54

Camera Exposure 54

Fine-Tuning Exposure 56

Marker Exposure 58

Setting Up a Rotary Table 58

Setting Up the Hardware 58

Using the Software 59

Calibrating the Rotary Table 59

360° Scanning 59

Manual Jogging 60

Capturing Scan Data 61

3D Scanning Basics 61

FlexScan3D User Manual 6

Scan Quality 61

Scan Preparation 61

Scanner Positioning 61

Part Preparation 62

Placing Reference Targets 62

Coating a Part 62

Setting Up Your Scan Project 63

Creating a New Project 63

Opening an Existing Project 63

Project Settings 64

Checking the System Connection 67

Setting the Scanning Volume 67

Setting Camera Alignment for Multi-Scanner
Setups 67

Setting a Cut Plane 68

Scanning 69

Processing Scan Data 69

Operations 70

Smooth 70

Erode 70

Decimation 70

Using 3D Window Display Commands 71

Manipulating and Editing Meshes 72

Selection 73

Movement 73

Rotation 73

Removing Unwanted Geometry 74

Helpful Hints 74

Aligning and Merging Scan Data 74

Aligning Meshes 74

Mesh Geometry 75

Selected Geometry 75

Markers 76

Rotary 76

Preset 76

Fine Alignment 76

Combining Meshes 76

Uncombining Meshes 77

Finalizing Meshes 78

Hole Filling 79

Auto Fill 80

Fill Selected Holes 81

Bridges 81

Importing and Exporting 83

Importing 83

File Formats 83

Importing a Mesh 83

Exporting 84

File Formats 84

Exporting Meshes 84

Advanced Scanning Techniques 86

Scanning with Texture 86

Setup 86

Calibration 88

Scanning 89

Scanning with Markers 91

Setup 92

Direct Placement 94

Indirect Placement 95

Scanning 95

Alignment 96

Scanning a Large Object 96

Setup 96

Calibration 97

Scanning 97

Scanning a Small Object 98

Setup 98

Calibration 98

Scanning 99

Scanning a Human Face 100

Setup 100

Calibration 100

Scanning 101

Data Cleanup/Alignment 102

Scanning a Mechanical Part 102

Setup 102

Calibration 102

Scanning 103

Scanning Hair 104

Steps 104

Scan 104

Align 104

Combine 105

Save and Duplicate 105

FlexScan3D User Manual 7

Rebuild 105

Initial Combine 105

Mesh Editing 106

Secondary Combine 108

Finalize 109

Sample Results 109

Other Notes 110

High-Contrast Scans 110

Accuracy 110

API/SDK and Automation 111

FlexScan3D Command Line Interface 111

interactive 111

script 111

scriptline 111

scriptquery 112

exit 112

FlexScan3D DLL Interface 112

Callbacks 112

Initializing FlexScan3D 112

Registering Callbacks 112

Processing Callbacks 113

Error Handling 113

Callback Functions 114

C API command functions 114

int FS3D_Init(const char* a_PathName) 114

int FS3D_Command(const char* a_
Command) 114

int FS3D_CommandAsync(const char* a_
Command) 114

int FS3D_AsyncResult() 114

const char* FS3D_ScriptQuery(const char*
a_Query) 114

int FS3D_Attach() 114

int FS3D_Detach() 115

int FS3D_RegisterCallback(const char* a_
FunctionName, void* userContext, void
(*a_Callback)(void* userContext, FS3D_
Handle handle)) 115

int FS3D_UnregisterCallback(const char* a_
FunctionName) 115

int FS3D_GetNumItems(const FS3D_Handle
handle, int* numItems) 115

int FS3D_GetItem(const FS3D_Handle 115

handle, const int itemIndex, char**
itemName, char** itemType)

int FS3D_GetString(const FS3D_Handle
handle, const char* itemName, char**
value) 116

int FS3D_GetDouble(const FS3D_Handle
handle, const char* itemName, double*
value) 116

int FS3D_GetFloat(const FS3D_Handle
handle, const char* itemName, float*
value) 116

int FS3D_GetInt(const FS3D_Handle
handle, const char* itemName, int* value) 116

int FS3D_GetDoubleArray(const FS3D_
Handle handle, const char* itemName, int*
numValues, double** values) 117

int FS3D_GetFloatArray(const FS3D_Handle
handle, const char* itemName, int*
numValues, float** values) 117

int FS3D_GetIntArray(const FS3D_Handle
handle, const char* itemName, int*
numValues, int** values) 117

int FS3D_GetByteArray(const FS3D_Handle
handle, const char* itemName, int*
numValues, unsigned char** values) 118

int FS3D_Abort() 118

int FS3D_Exit() 118

Automation 118

Working with Scripts 119

Running an Individual Command 119

Creating a New Script 119

Editing an Existing Script 120

Running a Script 121

Setting Script Buttons and Hot Keys 121

Script Buttons 121

Hot Keys 122

LUA Basics 122

Debugging 123

Comments 123

Variables 123

Global 123

Local 123

Conditionals/Booleans 123

Loops 124

for 124

FlexScan3D User Manual 8

while 124

nil 124

Strings 124

Lists 124

Examples 125

Functions 126

Calibrating 126

AddScanner(scannerID) 126

AddScannerByType(scannerType,
serialNumber) 127

AutoSetExposure() 127

ExportScanner(scannerName, fileName,
preserveImages) 127

GetPattern(scannerName) 127

GetScannerIDs() 127

GetScannerIndexFromName
(scannerName) 127

GetScannerNameFromIndex
(scannerIndex) 128

HDI_Advance_CalculateDelayTiming
(scannerName) 128

HDI_Advance_CalculateWhiteBalance
(scannerName) 128

HDI_Advance_Calibrate(scannerName) 128

HDI_Advance_CaptureCalibrationImage
(scannerName) 128

HDI_Advance_DeleteCalibration
(scannerName) 129

HDI_Advance_DeleteCalibrationImage
(scannerName, imageID) 129

HDI_Calibrate(scannerName) 129

HDI_CaptureCalibrationImage
(scannerName) 129

HDI_DeleteCalibrationImage
(scannerName, imageID) 130

ImportScanner(fileName) 130

IsScannerEnabled(scannerName) 130

RemoveScanner(scannerName) 130

RemoveScanners() 130

RenameScanner(scannerName,
newScannerName) 130

SetScannerEnabled(scannerName,
enabled) 131

ShowPattern(scannerName,
patternName) 131

StartVideo(scannerName) 131

StopVideo(scannerName) 131

TestCalibration(scannerName) 132

Cameras 132

AttachVideoWindow(scannerName,
cameraID, windowHandle) 132

DetachVideoWindow(scannerName,
cameraID) 132

Configuration 132

HDI_AutoUpdateScanner(scannerName) 132

HDI_CheckScanner(scannerName) 133

HDI_GetFirmwareVersion(scannerName) 133

HDI_GetScannerHealth(scannerName) 133

HDI_GetScannerModel(scannerName) 134

HDI_GetScannerOptionCode
(scannerName) 134

HDI_IsUpdateRequired(scannerName) 134

HDI_UpdateScanner(scannerName,
firmwarePath) 134

General 135

DisplayString(text) 135

Get(settingName) 135

NewListString() 135

PrintValue(variable) 135

QuietModeOff() 135

QuietModeOn() 135

QuietModeStackSize() 135

Run(fileName, arguments) 136

Set(name, value) 136

SetHotKey(name, key, script, description) 136

UnsetHotKey(key) 136

Wait(seconds) 136

Groups 137

Copy(groupID, suffix) 137

DeleteAllGroups() 137

DeleteGroup(groupName) 137

DeleteSelectedGroups() 137

DeselectAll() 137

DeselectGroup(groupID) 137

GetAllGroups() 137

GetGroupAliasFromID(gid) 138

GetGroupIDFromAlias(alias) 138

GetSelectedGroups() 138

FlexScan3D User Manual 9

IsGroupLoaded(groupID) 138

IsGroupLocked(groupID) 138

IsGroupSelected(groupID) 138

LoadAll() 139

LoadGroup(groupID) 139

LoadSelected() 139

LockGroup(groupID) 139

SaveGroup(groupID) 139

SaveGroups(groupIDs) 139

SelectAll() 140

SelectGroup(groupID) 140

SetGroupAlias(groupID, alias) 140

UnloadAll() 140

UnloadGroup(groupID) 140

UnloadSelected() 140

UnlockGroup(groupID) 140

Networking 141

HDI_AutoConfigureNetwork
(scannerName) 141

HDI_GetScannerAddress(scannerName) 141

HDI_SetScannerAddress(scannerName,
ipAddress, subnetMask, gateway,
useDHCP) 141

Processing 141

Align() 141

AlignFastICP(calibDir) 142

ClipGroup(groupID, xMin, xMax, yMin,
yMax, zMin, zMax) 142

Combine(groups) 142

Decimate(groupList) 142

Deviation(referenceGroupID,
targetGroupID, exportFile, pointIDs,
targetPoints) 142

ErodeSelected() 143

Export(outputDir, ext) 143

ExportGroups(outputDir, ext, groups) 143

Finalize(groups) 143

FineAlign(groups, type) 144

GetMarkers(groupID) 144

GetMeshDetails(groupID) 144

GetTransformation(groupID) 144

Import(fileName, markers) 145

MeshClean() 145

NewTransformationMatrix() 145

Process(groupID, generateType) 145

ProcessGroups(groups, generateType) 145

ReprojectUVTexture(referenceID,
targetID, txtWidth, txtHeight) 146

SetCleanUpType(cleanUpType) 146

SetPresetTransform(groups) 146

SetTransformation(groupID, matrix) 146

SmoothSelected() 146

UnCombine(groupID) 146

Projector 147

HDI_Advance_SetProjectorBrightness
(scannerName, brightness) 147

HDI_Advance_ShowImage(scannerName,
imageFileName) 147

Projects 147

CloseProject() 147

DeleteProject(name) 147

DeleteProjectPath(dir) 147

GetProjectNames() 148

GetProjectsPath() 148

LoadProject(name) 148

LoadProjectPath(dir) 148

NewProject(name) 148

NewProjectPath(dir) 148

SaveProject() 149

Rotary 149

GetNumMotors() 149

IsRotaryCalibrated(scannerName) 149

IsRotaryConnected() 149

Rotary360Scan(motor, nScans, HDR) 149

RotaryAlignScanner(scannerName,
motor) 149

RotaryCalibrate(scannerName, axis) 150

RotaryCaptureCalibrationImage
(scannerName) 150

RotaryDeleteCalibration(scannerName) 150

RotaryGetCurrAngle(motor) 150

RotaryGetCurrStep(motor) 150

RotaryGetStepsPerTurn(motor) 151

RotaryIDs() 151

RotaryMove(motor, steps) 151

RotaryReset() 151

FlexScan3D User Manual 10

RotaryRotate(motor, degrees) 151

RotarySet(ID) 151

RotarySetStepsPerTurn(motor, steps) 152

Scanning 152

ClearMarkerExposure(scannerName) 152

EasyScan() 152

GetMarkerExposure(scannerName) 152

GetScannerExposure(scannerName) 152

GetScannerGroup(scannerName) 153

IsScannerConnected(scannerName) 153

Scan() 153

ScanHDR() 153

ScannerConnect() 153

SetMarkerExposure(scannerName) 153

SetScannerExposure(scannerName, time)154

SetScannerExposureSize(scannerName,
size) 154

SetScannerGroup(scannerName,
groupName) 154

StartLiveScan() 154

StopLiveScan() 154

StopLiveScan() 155

UI 155

UI_InvertSelection() 155

UI_Recenter() 155

Various 155

GetMemoryUsage() 155

TranslucencyCompensation(groupID, k) 155

Rotary Plugin Module 155

Setup 155

API 155

Required Functions 156

int PRC_BuildRotaryList() 156

char* PRC_GetRotaryID(int index) 156

BOOL PRC_IsConnected(const char* ID) 156

BOOL PRC_GetNumMotors(const char*
ID, int& motors) 156

BOOL PRC_GetCurrStep(const char* ID,
int motor, int& step) 156

BOOL PRC_GetStepsPerTurn(const char*
ID, int motor, int& steps) 157

BOOL PRC_SetStepsPerTurn(const char*
ID, int motor, int steps) 157

BOOL PRC_Move(const char* ID, int
motor, int steps) 157

void PRC_Stop() 157

BOOL PRC_GetMaxSpeed(const char* ID,
int motor, double& speed) 157

BOOL PRC_SetMaxSpeed(const char* ID,
int motor, double speed) 157

Optional Functions 158

BOOL PRC_Rotate(const char* ID, int
motor, double degrees) 158

BOOL PRC_GetCurrAngle(const char* ID,
int motor, double& angle) 158

BOOL PRC_Reset(const char* ID) 158

C/C++ Specifics 158

C# Specifics 158

Rotary Protocol 164

General Rotary Communication Protocol 164

Commands 164

V 164

SmMxxx 164

ImMxxx 164

DmCWLO 164

DmCWHi 164

EmHALT 164

Rotary Sample Command Sequence 164

3D3 File Format 165

Version 8 file format 165

Version 7 file format 166

Version 6 file format 167

Version 5 file format 168

Version 4 file format 168

FAQ / Troubleshooting 170

Licensing 170

My license failed to activate, what do I do? 170

Setup and Calibration 170

Why does it take a long time during the
"Finding Corners" phase of a lens capture? 170

Calibration board reflects light onto the
camera(s) 171

When doing close scans, my exposure is too
bright even with the lens f-stop and cameras
exposure set to the darkest settings 171

Which type (black-and-white or gray) of
calibration board should I use to calibrate my 172

FlexScan3D User Manual 11

Single and Duo scanner?

Cameras 172

Can I 3D scan with digital DSLR cameras, HD
camcorders, or web cameras? 172

Can I scan with a non-matching pair of
cameras? 172

Why can't I just set the aperture to the widest
setting (lowest f-number) possible, and just
adjust the exposure in the software? 172

My Canon Digital Camera is not being
recognized by Windows 7 N 64-bit 172

My uEye camera is functioning slower than
expected and is not performing properly 172

FlexScan3D crashes or my cameras won't
respond when I plug in Firewire cameras 173

Windows 10 173

Windows 10 doesn't install the camera drivers 173

Does Windows 10 support Nikon cameras? 174

Scanning 174

No Data 174

Noisy Data 174

Wave Patterns 174

Misaligned Textures 175

Markers 175

Tutorial Videos 176

Glossary 177

FlexScan3D User Manual 12

Introduction
Welcome to the FlexScan3D user manual!

FlexScan3D is an innovative 3D scanner software package that allows you to create digital 3D models
directly from physical objects in seconds. It is completely scalable and generates high accuracy 3D
geometry. This user's guide provides information about installing, calibrating, and using FlexScan3D. If
you are a new user, we recommend that you read through the guide in the order presented to walk you
through the process of getting set up and introducing important features.

Document revision: A

FlexScan3D User Manual 13

Getting Started

This sections provides information on system requirements and installation.

System Requirements
Computer Requirements
For optimum performance, follow the recommended requirements.

FlexScan3D is not compatible with Netbooks or Macintosh computers.

Minimum Recommended

Operating System Windows 7 (64-bit)

CPU Intel Pentium IV or AMD Athlon XP or
equivalent 2 GHz

Quad-core Intel 2 GHz or better

Memory 4 GB 8 GB or greater

Video Card DirectX 9.0c compatible, 64 MB (with two
video outputs)

AMD or NVIDIA graphics adapter, 512 MB or
greater

Free Disk Space 50 GB or more 1 TB or more; 7200 rpm

Ethernet Card Gigabit Ethernet connection required for the
HDI 100 series scanner

FireWire Card FireWire 800 Dual Bus card required for
scanning with FireWire MV Cameras

USB (HDI Advance) USB 3.0

HDI Scanners and FlexScan3D Software
HDI scanners and the FlexScan3D software are complete 3D scanning systems that include a projector,
cameras, lenses, and other equipment to give you everything you need to scan objects. For more
information, contact us at LMI Technologies.

Installation
The FlexScan3D setup wizard easily guides you through the installation of the software. Although you
can change several settings, the defaults are the recommended settings for maximum ease of use.

For Windows 10 installation issues, see Windows 10 on page 173.

To install FlexScan3D:

1. Log in to the LMI Technologies Download Center (downloads.lmi3d.com)

http://www.ptgrey.com/products/firepro/adapters/FWB-PCIE/PCIe_1394b_card_datasheet.pdf
http://www.lmi3d.com/contact/
http://downloads.lmi3d.com/

FlexScan3D User Manual Getting Started • Installation • 14

To use this site, you need a download account. To create a download account, send your contact name,
email address, company name, and scanner model to orders@lmi3D.com.

2. Click on HDI Advance Files or HDI 100 Files, and select the software for your version of Windows.

3. After the download is complete, double-click the application icon to start the setup wizard, which will
guide you through the installation.
If a message appears asking if you want to allow the program to make changes to the computer, click
Yes.

4. Choose the language to use during the installation.

5. Click Next to open the License Agreement dialog box.

6. Read the agreement carefully. Then check I accept the agreement and click Next to open the Select
Destination Location dialog box.

mailto:orders@lmi3D.com?subject=Download account creation

FlexScan3D User Manual Getting Started • Installation • 15

7. Type or browse to where you want to install the program. The default is the recommended installation
folder. Click Next to open the Select Components dialog box.

8. Select the components you want to install and click Next to open the Select Start Menu Folder dialog
box.
You should install all of the components that are checked by default to ensure that FlexScan3D runs
properly. The optional USBPro driver should only be installed if you need better USB 3.0 camera
performance, as this driver prevents non-camera devices from working on USB 3.0 ports.

FlexScan3D User Manual Getting Started • Installation • 16

9. Type or browse to where you want to create shortcuts. Click Next to open the Select Additional Tasks
dialog box.
The default is the recommended Start Menu folder.

10. Select or clear the Create a desktop icon check box and click Next to open the Ready to Install
dialog box.

FlexScan3D User Manual Getting Started • Installation • 17

11. Click Install.

12. The Installing dialog box shows the progress of the installation.
This process may take several minutes.

Do not power off your operating system during installation.

FlexScan3D User Manual Getting Started • Activation and Upgrades • 18

13. Choose whether to restart your computer immediately or manually later and click Finish to exit the
installer.
Make sure to restart your computer before starting FlexScan3D.

To begin using the software, double-click the FlexScan3D shortcut on your desktop, or click
FlexScan3D from the Start menu.

Activation and Upgrades
Activation
To activate the license for the software, you need an Internet connection. If you do not have access to
the Internet, please contact us to discuss switching to a pre-activated USB dongle license.

Installation Key
You will need to activate the installation key the first time you run the software.

http://www.lmi3d.com/contact/

FlexScan3D User Manual Getting Started • Activation and Upgrades • 19

To activate the installation key:

1. Start FlexScan3D. The FlexScan3D License dialog box opens.

2. Click Installation Key.

3. Type your activation code in Enter Activation Code.

4. Click Activate.
You may need to wait several moments while the software communicates with the license server.
After the license has been activated, you can start using FlexScan3D.

Dongle Key

To start FlexScan3D using a dongle:

1. Insert the dongle into a USB slot on the computer and wait for Windows to recognize the device.

2. Start FlexScan3D.

3. If a User Account Control (UAC) message appears, click Yes to begin using FlexScan3D.

If you try to start FlexScan3D without first inserting the dongle, the FlexScan3D License dialog box
opens. This dialog box appears any time you start FlexScan3D without either a valid installation key or a
dongle.

FlexScan3D User Manual Getting Started • Activation and Upgrades • 20

Insert the dongle. If the dongle contains a valid license, FlexScan will start and you can start using it.

Activating a Dongle
If the dongle does not contain a valid license, it can be activated using a dongle activation code (obtained
from LMI Technologies).

To activate a dongle:

1. Click Dongle Key.

2. Enter the activation code.

3. Click Activate.
You can now start using FlexScan3D.

Licensing

Viewing Your License
You can view your license from within FlexScan3D.

To view your license:

1. Click the Getting Started tab.

2. Click License to open the Details dialog box.

FlexScan3D User Manual Getting Started • Activation and Upgrades • 21

Upgrading Your Licence
To upgrade an existing license to a new one, you must be connected to the Internet.

To upgrade your license:

1. Click the Getting Started tab.

2. Click License to open the Details dialog box.

3. Click Upgrade License to open the FlexScan3D License dialog box.

FlexScan3D User Manual Getting Started • Interface Language • 22

4. Select either Installation Key or Dongle Key as the license activation type.

5. Type your new activation code in Enter Activation Code.

6. Click Upgrade to complete the process and view your new license details.

Interface Language
You can change the interface language of FlexScan3D.

To change the interface language:

1. Go to the Settings tab.

2. In the Settings tab, click on the Language drop-down box and choose the interface language you want.

3. Restart FlexScan3D for the language change to take effect.

FlexScan3D User Manual 23

Setting Up: HDI Advance Scanners

This section only applies to the R1x, R3x, and R4x models of the HDI Advance.

The following topics describe how to set up the capturing unit for 3D data acquisition. In these topics,
the HDI Advance R3x 3D Scanner was used. There are slight variations to the instructions depending on
which model you have purchased.

For instructions on assembling your 3D scanner, see the following Quick Start Guides:

l R4x

l R1x / R3x (HDMI connector)

l R1x / R3x (VGA connector)

Connecting Your Computer and Projector
Windows 7 and 8

To connect your computer and projector:

1. Connect the projector to the computer using the HDMI cable.
If your system was delivered with a VGA cable, connect the projector and the computer using that
cable, or use a separately purchased standard HDMI cable.

2. Turn on the projector.

3. Right-click on the Windows desktop and click Screen resolution to open Screen Resolution in Control
Panel.

4. Select the projector in Display.

5. Set the recommended screen resolution in Resolution. We recommend using the Native Resolution on
your projector. This setting is easy to find within the projector resolution screen. Look for the setting in
BOLD, which also usually has "Recommended" next to it.

http://downloads.lmi3d.com/system/files/HDI/documents/HDI Advance/15229-1.0_MANUAL_Quickstart-HDI-Advance_R4x.pdf
http://downloads.lmi3d.com/system/files/HDI/documents/HDI Advance/15214-1.0_MANUAL_Quickstart-HDI-Advance-HDMI_cable.pdf
http://downloads.lmi3d.com/system/files/HDI/documents/HDI Advance/15190-2.3_MANUAL_Quickstart-HDI-Advance.pdf

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Connecting Your Computer and Projector • 24

6. Click OK. The projector will be available in the Projector list in FlexScan3D.

7. Make sure to select Extend These Displays in the Multiple Displays drop-down list.

It is also important to set the projector refresh rate to 60Hz.

To set the projector refresh rate:

1. Open the Screen Resolution dialog box.

2. Select the projector in Display.

3. Click Advanced settings to open the settings dialog box for the projector.

4. Click the Monitor tab.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Connecting Your Computer and Projector • 25

5. Select 60 Hertz in Screen refresh rate.

6. Click OK.

Steps to Get Started on 3D Scanning
We recommend that you go through the following steps in sequence to familiarize yourself with the
basics of 3D scanning:

1. Installing FlexScan3D (page 13)

2. Activating FlexScan3D (page 18)

3. Adding a scanner (page 26)

4. Creating a calibration (page 28)

5. Configuring calibration settings (page 28)

6. Capturing calibration images (page 43)

7. Confirming your calibration quality (page 48)

8. Setting up a scan project (page 63)

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adding a Scanner • 26

9. Processing scan data (page 69)

10. Manipulating and editing meshes (page 72)

11. Importing and exporting your scan data (page 83)

Setting Up Your 3D Scanning Environment
Make sure the projector light is brighter than the ambient light in the location you are scanning. For
more information on how to set up your 3D scanning environment, please visit our blog post on 3D
Scanning in Everyday Environments.

Final Thoughts
We hope the instructions have given you a good understanding of the 3D scanning process. If you are
unsure of anything, see FAQ / Troubleshooting on page 170. Happy Scanning!

Adding a Scanner
Before adding a scanner, make sure the scanner is connected and powered on. For an HDI Advance, this
includes both the cameras and projectors, ensuring that the projector is turned on and is available in the
Windows display settings.

To add a scanner:

1. Go to the Scanners tab and click the Add button on the ribbon.

2. In the list of calibrated scanners attached to the system that is displayed, select the desired scanner.

http://blog.lmi3d.com/3D-Scanning-in-Everyday-Environments

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Calibration Overview • 27

If you are setting up an HDI Advance for the first time, select Create new HDI Advance... from the list.

3. Click OK.

If this is a new HDI Advance, the next step is to calibrate the scanner. See Calibration Overview below for
more details.

For a calibrated HDI Advance, see 3D Scanning Basics on page 61, or alternatively, see Setting Up Your
Scan Project on page 63.

Calibration Overview
A scanner calibration defines the conversion from 2D images into 3D geometry. Calibration is perhaps
the most important part of setting up your 3D scanner. When calibrating for the first time, try not to
rush the process. It may take some practice to achieve the desired calibration accuracy. An accurate
calibration is the key prerequisite for capturing high-quality scan data. Note that this applies to the HDI
Advance line of products only. HDI 100 series scanners are calibrated during the manufacturing process,
and as a result they do not require user calibration.

Scanner Types
Calibration can be done with either one camera and a projector, referred to in this manual as a "Single"
scanner, or two cameras and a projector, referred to as a "Duo" scanner. Duo scanner configurations are
generally preferred due to the improved levels of accuracy. A "Multi" scanner simply refers to the use of
multiple scan heads.

Duo
A duo calibration requires two identical cameras and one projector. It is calibrated by capturing images of
a calibration board from both cameras. The images are then compared in order to determine the 3D
coordinates of the cameras relative to the target scanning area. Duo scanner is recommended for users
who require high accuracy.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Configuring the Calibration • 28

Single
A single calibration requires one camera and one projector. It is calibrated by capturing images of
projected patterns on a calibration board. The software analyzes these images in order to determine the
3D coordinates of the camera relative to the projector, as well as to the target area. Single scanner is
recommended for users who require maximum coverage.

Scanner Type Quick Comparison Chart

Calibration
Type

Number of
Cameras

Number of
Projectors

How to Calibrate Advantages

Duo 2 (identical) 1 Capture images of a calibration
board from both cameras

Provides higher accuracy

Single 1 1 Capture images of projected
patterns on a calibration board

Provides maximum coverage

Multi Multiple single and/or duo
scanners as described above

Calibrate each scanner as
described above

Captures the object from
multiple locations and angles at
the same time and allows for
more coverage from a single
press of the Scan button

Step-by-Step Instructions (Video)

Single Scanner Calibration
watch

Duo Scanner Calibration
watch

Configuring the Calibration
Capture Settings

It is HIGHLY recommended that you view our step-by step instruction videos (page 28). This is
an essential step and must not be skipped. The information gained by viewing the tutorial
videos will greatly help you understand this process.

Selecting Cameras
Make sure your camera is connected and that you have installed camera drivers. We do not
recommend manually installing the latest drivers from Point Grey Research, as they may be
incompatible with the latest version of FlexScan3D and may cause performance issues.

To select cameras:

1. Click on the Scanners tab at the top of FlexScan3D.
You will be making adjustments in the panels shown below.

https://www.youtube.com/watch?v=xGqup69BP1k
https://www.youtube.com/watch?v=ZnEpjMOT4xE

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Configuring the Calibration • 29

2. Click the button next to Camera 1 to open the Select Camera dialog box.

3. Select the camera brand in Camera Type.

4. Select the camera from the list.
If there are multiple cameras attached to the computer and you are unsure which one to choose, select
the first one, then confirm which one it is by checking the live camera feed. If you selected the wrong

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Configuring the Calibration • 30

camera, repeat steps 2 though 4, but select the next camera in the list instead.

5. Click OK.
After you select a camera, you can rename the camera to make it easier to distinguish from other
cameras. To rename a camera, click the arrow to the right of the camera button and type the new
name.

6. For a Duo scanner, do the following:
a. Click the button next to Camera 2 to open the Select Camera dialog box.

b. Repeat steps 2 through 5.

7. If your system includes a separate texture camera, do the following:
a. Select the Enable Texture Camera check box.

b. Click the button next to Texture to open the Select Camera dialog box.

c. Repeat steps 2 though 5.

Selecting a Projector
To select the projector, select it from the drop-down list:

The Resolution is set automatically after capturing the first image, and you cannot change it
afterward.

Other Settings

Selecting the Calibration Board
Calibration boards can vary in size. The Calibration Board is defined by the size of the square in mm.
Smaller calibration boards are better for scanning small objects, while larger calibration boards are
necessary to ensure accuracy for scanning large objects.

Setting Filters
Setting filter values allows you to clip near and far data points, and are based on the distance from the
scanner to the target scanning area. For example, if the wall behind an object keeps showing up as
geometry in the scan data, you can reduce the Z Far value so that any data corresponding to the wall is
automatically removed.

To set filters, on the far left of the screen, on the Settings tab, adjust the distances in millimeters for the
Z Near and Z Far values.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 31

Recommended Next Step: Adjusting Your Equipment (page 31)

Adjusting Your Equipment
Scanner Menu Bar
The scanner equipment controls are accessed via the menu bar on the right side of FlexScan3D.
Depending on the system, the following are some of the buttons present on the menu bar.

Command Icon Description

Show/Hide all scanners (for multi-scanner calibrations only).

Show/Hide HDI Advance scanner control.

When using a multi-scanner calibration, each scanner is represented by its own button on the menu bar.

Camera Exposure
The exposure of the images captured by a camera depends on the projector brightness, camera shutter
speed, and camera aperture. Shutter speed controls how long to let light pass through (duration), while
aperture controls how much light passes through the camera lens (quantity).

If the camera live video feed is running, it will automatically indicate areas where the image is
overexposed (in red) and/or underexposed (in blue).

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 32

Over-exposed image in live feed

Under-exposed image in live feed

Exposure Calibration
To ensure your scanner hardware is optimally configured, position the calibration board in front of the
scanner (in the target scanning area). Note that the use of a calibration board is not a requirement for
setting the exposure; it is used here as an example object since it consists of easily distinguishable light
and dark areas. Then follow the steps below.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 33

To calibrate exposure:

1. Open the scanner control on the right side of the application.

2. Set the projector pattern to Focusing.

3. Slide the projector brightness slider all the way to the right.

4. Set the shutter speed to the fastest time possible (first item in the drop-down list).

5. Turn on live video if it is not already on. If live video is not available for your camera model, you will
need to use screenshots to test each camera setting change.

Now adjust the camera lens aperture so that the calibration board is clearly visible without showing any
exposure highlights.

Fine-Tuning Exposure
Fine-tuning exposure will produce maximum scan quality.

To fine-tune exposure:

1. Set the projector pattern to White.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 34

2. Place your cursor over the video feed from the camera.

3. Click on the icon that appears in the top-left corner of the video feed and click Lines.

4. Hover over the video feed to view the horizontal brightness levels of the image.

5. Rotate the aperture ring while looking at the line viewer. You should notice the lines moving up and
down depending on the direction of rotation. No values should touch the top of the line view window
(overexposed), but the upper values should not be too low either (underexposed). The goal is to have
good contrast between light and dark areas.

Under-exposed

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 35

Optimally exposed

Over-exposed

A Note About Aperture
Aperture is usually measured in f-numbers or f-stops. An f-stop of 1.4 (larger hole) will result in a brighter
image than an f-stop of 8.0 (smaller hole). Larger stops (smaller f-numbers) can use faster shutter
speeds, which results in faster scanning. There is a drawback though: Smaller f-numbers result in a
reduced depth of field.

A reduced depth of field means that there is a very narrow region in terms of the distance up to which
you can scan an object. Larger objects may not fit within this focus window, which means that accuracy
would be reduced for the near and/or far surfaces. This means that when adjusting the aperture for
brightness, try to use as large an f-stop number as possible to maximize the focus area. This is why it's
best to ensure the projector is as bright as possible before adjusting the aperture, which allows you to
use a larger f-stop number to bring the exposure back down to an ideal range.

Generally, we recommend using an f-stop between 5.6 and 11, and most of the time we use an f-stop of
8.

Aperture Examples
The following examples illustrate the differences between aperture f-stops. With a smaller f-stop
number, the depth of field is much narrower than the larger f-stop numbers. The shutter speed is
adjusted in order to keep the overall exposure consistent across the f-stop. The shutter speed has no
effect on the focus range.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 36

Tape measure example. The camera is focused on the '2F' mark on the tape. At f/2, the depth of field is so narrow the focus
falls off almost immediately above and below the focus point. As the f-stop increases, so does the depth of field range.

Marker head example. The camera is focused on the tip of the nose. Note the calibration board in the background: It is
blurry until the aperture is brought down to f/8. Also compare the ear between apertures: Blurry at f/2, slightly soft at f/4,

and sharply in focus at f/8. (Look carefully at the marker sticker on the ear).

Marker Exposure
A separate exposure duration can be set to optimize the detection of markers, which is especially useful
when there is a high contrast between the marker and the target's surface. Once marker exposure has
been set, for each scan an additional image capture will be made using the marker exposure to help
locate markers on the scan.

To set marker exposure:

1. Ensure that the live video feed is on by clicking on Toggle Video .

2. Set the exposure using the slider.
Follow the guidelines described in Fine-Tuning Exposure above, but choose an exposure optimized for
the markers and not the overall image of the target.

3. Click on Advanced below the slider.

4. Click on the Set button to set the marker exposure.

A Marker Exposure indicator will be displayed above the Scan button.

To clear marker exposure, click on theClear button.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Adjusting Your Equipment • 37

Setting the Focus
Blurry images produce poor scan data. You should properly focus both the projector and camera(s) to
capture high-quality scans.

Position the calibration board so that the crosses (five black dots) are vertically aligned in live view.

Projector

To set projector focus:

1. On the far right of the screen, select Focusing in Pattern. This projects a pattern of lines and squares
onto your target area.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Calibrating the Scanner (Advanced Configuration) • 38

2. Change the projector zoom based on the field of view (FOV) that you are using.
For a FOV of 200 mm or lower, set the projector zoom to the minimum by rotating the zoom dial
completely to the left (when standing behind the scanner). For a FOV of 400 mm and higher, set the
projector zoom to the maximum by rotating the zoom dial completely to the right.

3. Place the calibration board in your target scanning area, with the back of the board facing the projector.
You can use any object when focusing the projector, but it is better to use the calibration board. By
using the calibration board, the focus point is where the standoff should be (where the 5 black dots of
the cross are aligned).

4. While looking at the object, rotate the focus ring on the projector until the lines projected onto the
sample object are thin and sharp.

Camera

To set camera focus:

1. On the scanner control, select White in Pattern.

2. Place the calibration board in your target scanning area, with the back of the board facing the camera.
You can use any object when focusing the camera, but it is better to use the calibration board. By using
the calibration board, the focus point is where the standoff should be (where the 5 black dots of the
cross are aligned).

3. Place your cursor over the video feed from the camera.

4. Click on the icon that appears in the top-left corner of the video feed and click Zoom.

5. While looking at the zoomed-in view of the object and lines, rotate the focus ring on the camera until
the video image is sharply in focus.

6. Repeat for all cameras.

Do not use a projector pattern to focus the cameras. If the projector pattern itself is not in
focus, then it is nearly impossible to properly focus the camera. Instead, use printed text as a
focus object, such as the calibration board's text, a magazine cover, a bar code, or anything that
has fine detail.

Calibrating the Scanner (Advanced Configuration)
Because cameras are shipped with proper configuration, we do not recommend that you
change these settings unless you know what you are doing.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Calibrating the Scanner (Advanced Configuration) • 39

Point Grey Research (Flea or Grasshopper)

Point Grey camera

To configure settings for a Point Grey camera:

1. On the far right side of the window, click the Camera Settings icon (shown in the red square) to open
the Camera Settings dialog box.

2. Adjust the settings and click OK. Refer to the table below for more information.

Setting Description

Shutter Time Sets the camera's exposure time when capturing images. Faster shutter times result in
faster scanning, but also result in lower brightness.

Point Grey Settings

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Calibrating the Scanner (Advanced Configuration) • 40

Setting Description

We strongly recommend that you set the shutter time to a
multiple of the projector's refresh rate (usually 60Hz or
16.67ms, depending on the projector model). Otherwise, the
captured image may contain uneven exposure, incomplete
projector patterns, etc.

Frame Rate Determines the minimum and maximum shutter time range. Use a lower frame rate if
you want longer exposure times. Use a higher frame rate if you want shorter exposure
times.

Restore Defaults Resets the camera back to its pre-configured state.

Canon

To prepare a Canon camera:

1. Set the camera to Manual Exposure mode by turning the dial on the top of the camera to M.

2. Set the lens to Manual Focus mode (be sure to focus first beforehand).
Most lenses provide a switch to choose manual focus (usually labeled MF) or auto focus (usually
labeled AF). Auto focus interferes with the exposure time during scanning. If you need to refocus after
calibration, switch AF back on, capture an image (using the Screenshot button), then switch back to MF.

Avoid any physical contact with the camera after calibration. Touching the camera can disturb
the calibration. To turn the camera on and off, use an AC adapter instead of the camera's
power switch.

Canon camera

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Calibrating the Scanner (Advanced Configuration) • 41

To configure settings for a Canon camera:

1. On the far right side of the window, click the Camera Settings icon (shown in the red square) to open
the Camera Settings dialog box.

2. Adjust the settings and click OK. Refer to the table below for more information.

Setting Description

Aperture Controls the size of the shutter inside the lens, which in turn controls how much light
will reach the sensor. Although aperture can also be used to control the exposure, its
primary purpose is to set the depth of field (range of acceptable focus). The smaller the
f-number, the wider the aperture opening will be, and the depth of field will be
narrower. Therefore, you must be careful to ensure the entire subject is in focus when
using small f-numbers.

Shutter Speed Controls how long the shutter will stay open to capture an image. This is the main way
of controlling exposure. The values used are in seconds or fractions of a second.

ISO Controls the sensor's sensitivity to light, and is another way of controlling exposure. If
you use the flash, ISO also controls the flash range (the higher the ISO is, the farther the
flash range will be).

Higher ISO settings will also add noise (graininess) to the
image, so it is recommended to keep this as low as possible.

Image Quality Determines whether images are saved out as RAW and/or JPG, and in what resolution
and/or quality (amount of lossy compression). FlexScan does not natively support RAW
images, so you will need to use other software to process RAW images.

Orientation Designates the mounting position relative to the projector. For example for portrait
mode, you need to specify the orientation so that the resulting image will be auto-
rotated to match the scanner for processing. The available options are 0, 90, 180, and
270 degrees clockwise.

Canon Settings

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Calibrating the Scanner (Advanced Configuration) • 42

Nikon
Due to the nature of the Nikon development kits, live video is not available for Nikon cameras.
Use the Screenshot feature when testing Nikon settings.

To prepare a Nikon camera:

1. Set the camera to Manual Exposure mode by turning the dial on the top of the camera to M.

2. Set the lens to Manual Focus mode (be sure to focus first beforehand).
Most lenses provide a switch to choose manual focus (usually labeled MF) or auto focus (usually
labeled AF). Auto focus interferes with the exposure time during scanning. If you need to refocus after
calibration, switch AF back on, capture an image (using the Screenshot button), then switch back to MF.

Avoid any physical contact with the camera after calibration. Touching the camera can disturb
the calibration. To turn the camera on and off, use an AC adapter instead of the camera's
power switch.

Nikon camera

To configure settings for a Nikon camera:

1. On the far right side of the window, click the Camera Settings icon (shown in the red square) to open
the Camera Settings dialog box.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Capturing Calibration Images • 43

2. Adjust the settings and click OK. Refer to the table below for more information.

Setting Description

Aperture Controls the size of the shutter inside the lens, which in turn controls how much light
will reach the sensor. Although aperture can also be used to control the exposure, its
primary purpose is to set the depth of field (range of acceptable focus). The smaller the
f-number, the wider the aperture opening will be, and the depth of field will be
narrower. Therefore, you must be careful to ensure the entire subject is in focus when
using small f-numbers.

Shutter Speed Controls how long the shutter will stay open to capture an image. This is the main way
of controlling exposure. The values used are in seconds or fractions of a second.

Nikon Settings

Capturing Calibration Images
It is HIGHLY recommended that you view our step-by step instruction videos (page 28). This is
an essential step and must not be skipped. The information gained by viewing the tutorial
videos will greatly help you understand this process.

After you complete all the configuration steps, it is time to start capturing calibration images.

These instructions assume that you still have the calibration open that you configured earlier. If
not, click the Calibration tab, and click Open Calibration to select it.

To capture calibration images:

1. Ensure that the cameras and the projector are securely fastened. This is extremely important because
any change in angle or position will ruin the calibration.

2. Ensure that the projector is turned on.

3. Place the calibration board in your target area.

4. Ensure that the projector illuminates the entire grid.

5. Use the live view to make sure that the grid is completely visible to all cameras.

6. On the far left of the screen, click Capture.
FlexScan3D automatically detects the grid and overlays a series of colored lines and dots on top of the
image. The resulting image file appears in the Images list.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Capturing Calibration Images • 44

If you take a bad image, an error message displays to indicate that the calibration image is invalid. You
can either delete the image immediately or keep it.

7. Click the image file to view it.

8. Ensure that the lines are straight and that the dots are on the corners of the squares. Look at the
examples given below as a reference.

9. Repeat steps 6 though 8 so that you have calibration images of the entire target area, adjusting the
location of the calibration board each time.
You will need to capture images of the calibration board from multiple positions and various angles.
l Ensure calibration board is in the center of both cameras.

l Move the calibration board vertically and horizontally to cover the entire field of view.

l Adjust the angle of the calibration board for variations.

l Move the calibration board forward and backward for depth variation.

FlexScan3D allows you to calibrate with as few as five images, but this is usually not enough if you
require high accuracy. For high-accuracy scans, you should consider capturing 30 to 40 or more
calibration images.

See Tutorial Videos on page 176 (Single and Duo Camera Calibrations) for more information.

Examples

Good Calibration Images

Duo calibration, left camera

Duo calibration, right camera

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Capturing Calibration Images • 45

Single calibration, camera view Single calibration, projector view

Bad Calibration Images

Overexposed Underexposed

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Capturing Calibration Images • 46

Single calibration, projector view, bad camera focus Single calibration, projector view, bad projector focus

Crooked grid lines due to bad focus

Crooked grid lines due to bad focus, zoomed in

Missing grid squares

Finishing Calibrating
After you capture all the calibration images, on the far left side of the screen, click Calibrate. FlexScan3D
uses the calibration images to define the scanner calibration. After it completes, a message displays that
indicates the accuracy of the calibration and your coverage.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Capturing Calibration Images • 47

Calibration results after 15 scans

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Confirming the Calibration • 48

Calibration results after 40 scans

If you are not happy with your accuracy or coverage you can simply press OK and continue to capture
images. Otherwise, go to the Project tab.

Your scanner should now be calibrated and ready for scanning.

Recommended Next Step: Confirming the Calibration (page 48)

Confirming the Calibration
To get a clearer definition of the accuracy of your calibration, you must test actual scans.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Confirming the Calibration • 49

To test actual scans:

1. Click the Project tab for testing.
Refer to the section on capturing scan data for more information about creating a project, scanning,
and processing scan data.

2. Scan the calibration board in three or four different positions and angles.
Scanning the calibration board provides a measurable way to verify your calibration accuracy.

3. Inspect the 3D geometry produced by each scan individually.
Is the geometry flat? Or does the board appear to curve? If the geometry is not flat, go through the
check list below.

Good shape, flat

Bad shape, curved

If it looks like the calibration is bad, click on the Scanners tab and check the following:

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Setting Up a RotaryTable • 50

l Is the projector set to its native resolution?

l Do the calibration images appear focused and properly exposed?

l Are the colored grid lines straight? Use the zoom view to confirm that none of your calibration
images have crooked grid lines.

l Is the calibration board positioned to cover the entire scanning area? Make sure to include near/far,
top/bottom, left/right, in key combinations at various angles.

l Did you take enough calibration images?

If everything looks good, create a new project, and start scanning!

Setting Up a Rotary Table
Using a rotary table streamlines the scanning process. Only minimal user interaction is required to
achieve a 360° scan of a static object.

Setting Up the Hardware

To set up the hardware:

1. Ensure FlexScan3D has been installed, including the rotary driver component (installed by default).

2. Connect the cable from the table motor to one of the available ports on the controller box.

3. Plug in the power cable for the controller box.

4. Connect the USB cable between the controller box and the PC.

Using the Software
Before the rotary table can be used in FlexScan3D, it must be calibrated.

Calibrating the Rotary Table
Once the rotary is calibrated, FlexScan3D will automatically align meshes based on the rotary position.
To calibrate the rotary, you will first need to make sure you already have a scanner connected and open.
For HDI Advance, the scanner must also be calibrated.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Setting Up a RotaryTable • 51

To calibrate the rotary table:

1. Create a new project or open an existing one.

2. On the Project tab, click the Scan button (top-left of the application window) to switch to Scan mode.
Note that a valid calibration must be open and the scanner connected. Otherwise, this button will be
disabled.

3. Click the Enable Rotary checkbox.
The software will attempt to connect to the rotary. If it succeeds, you will immediately be prompted to
calibrate. If it does not succeed, please make sure all cables are connected properly to the controller
box and PC, and also ensure that the power cord is plugged in.

4. Place a calibration board on the rotary, ensuring that it can be seen by the camera(s) and that it is not
overexposed or underexposed.
For HDI Advance scanners, the calibration board must be the exact same size as the one used during
calibration of the scanner. Otherwise, alignment will not work properly.
For HDI 120 scanners, use a 10 mm calibration board. For HDI 109 scanners, use a 5 mm calibration
board.

5. Click OK to start this calibration process.
The rotary will rotate as needed and capture images of the calibration board at various angles. A
message will be displayed informing you whether or not the calibration was successful.

If you find that scans are not aligning properly (for example, if the wrong board was used), you
can click Recalibrate to run the calibration process again.

360° Scanning
The most common use for a rotary is to achieve a complete 360° scan of an object. If the rotary is not
yet calibrated, first follow the steps for calibrating the rotary.

To do a 360° scan of an object:

1. If the Enable Rotary checkbox is not checked, check it now.

2. Choose the number of desired scans.
More scans will result in better coverage, but setting this value too high may result in a lot of excess
data, which will slow down scanning and mesh operations. We recommend doing 6 to 12 scans.

3. Choose whether or not to automatically combine the scans by checking/unchecking the Auto Combine
checkbox.
Automatically combining the scans will simplify subsequent operations on the mesh, but may not be
desired in all cases. (For example, if the scans are intended to be exported for alignment in third-party
mesh processing software.)

4. Make sure the object is on the rotary table facing the scanner, and then click Scan.
Scanning, processing, and alignment may take several minutes to complete.

5. Often, you will also need to place the object on its side and run another scan to capture the bottom and
top of the object. Align to the other scans as needed.

FlexScan3D User Manual Setting Up: HDI Advance Scanners • Setting Up a RotaryTable • 52

Manual Jogging
The rotary can also be used manually. Click the rotary icon to bring up the rotary controls. If the rotary is
calibrated, new scans will get aligned based on the rotary position.

FlexScan3D User Manual 53

Setting Up: HDI 100 Series Scanners

The Quick Start Guide and Hardware Manual for HDI 100 series scanners can be downloaded from the
HDI 100 Series download area.

HDI 100 Series Scanner Configuration
After adding an HDI 100 series scanner, basic sensor information and the network connection details will
be displayed.

Updating the Firmware
The FlexScan3D package includes the latest firmware for the sensor. If the sensor firmware is
incompatible, an UPDATE REQUIRED message will be displayed in red in the Scanner panel. Click the
Update Firmware... button to update the sensor. The update will take a couple of minutes to
complete.

Network Configuration
If the scanner is connected and the network is configured properly, the networking panel will contain the
current network information for the scanner.

If there is an issue with the network connection, a CONFIGURATION REQUIRED message will be
displayed in red. Click theAuto-Configure button to attempt to configure the network automatically.
Note that if the scanner is connected to an Ethernet jack on the computer, the Ethernet adapter may be
modified to use a static IP address.

Network settings can also be set up manually. Check theAdvanced Network Configuration option,
enter the desired values for the IP address, subnet mask, and gateway, and then click Apply Network
Settings.

http://lmi3d.com/support/downloads/hdi-100-series

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Adjusting Your Equipment • 54

Adjusting Your Equipment
Scanner Menu Bar
The scanner equipment controls are accessed via the menu bar on the right side of FlexScan3D.
Depending on the system, the following are some of the buttons present on the menu bar.

Command Icon Description

Show/Hide all scanners (for multi-scanner systems only).

Show/Hide HDI scanner control.

When using a multi-scanner system, each scanner is represented by its own button on the menu bar.

Camera Exposure
The exposure duration of the images captured by the scanner's cameras can be adjusted.

If the camera live video feed is running, it will automatically indicate areas where the image is
overexposed (in red) and/or underexposed (in blue).

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Adjusting Your Equipment • 55

Over-exposed image in live feed

Under-exposed image in live feed

To ensure your scanner hardware is optimally configured, position an object in front of the scanner (in
the target scanning area). Note that the use of a calibration board is not a requirement for setting the
exposure; it is used here as an example object since it consists of easily distinguishable light and dark
areas.

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Adjusting Your Equipment • 56

To set exposure:

1. Open the scanner control on the right side of the application.

2. Set the projector pattern to Focusing.

3. Slide the projector brightness slider all the way to the right.

4. Set the shutter speed to the fastest time possible (first item in the drop-down list).

5. Turn on live video if it is not already on. If live video is not available for your camera model, you will
need to use screenshots to test each camera setting change.

Now adjust the camera lens aperture so that the object in the target scanning area is clearly visible with
no exposure highlights.

Fine-Tuning Exposure
Fine-tuning exposure will produce maximum scan quality.

To fine-tune exposure:

1. Ensure that the live video feed is on by clicking on Toggle Video

2. Choose Phase in the Pattern drop-down list.

3. Place your cursor over the video feed from the camera.

4. Click on the icon that appears in the top-left corner of the video feed and click Lines.

5. Hover the mouse pointer over the video feed to view the brightness level of the row of pixels under the
mouse pointer.

6. Adjust the exposure duration using the Exposure slider.
The line should not touch the top of the line view window (overexposed), but should not be too low
either (underexposed). The goal is to have good contrast between light and dark areas. Peaks should
generally be close to an intensity level of 192. When HDR is checked under Scan Mode, the slider can
be used to set upper and lower exposure limits.

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Adjusting Your Equipment • 57

Under-exposed

Optimally exposed

Over-exposed

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Setting Up a RotaryTable • 58

If multiple scanners are connected, the current exposure can be applied to all of the scanners by right-
clicking on the Exposure slider and choosingApply to all scanners.

Marker Exposure
A separate exposure duration can be set to optimize the detection of markers, which is especially useful
when there is a high contrast between the marker and the target's surface. Once marker exposure has
been set, for each scan an additional image capture will be made using the marker exposure to help
locate markers on the scan.

To set marker exposure:

1. Ensure that the live video feed is on by clicking on Toggle Video .

2. Set the exposure using the slider.
Follow the guidelines described in Fine-Tuning Exposure above, but choose an exposure optimized for
the markers and not the overall image of the target.

3. Click on Advanced below the slider.

4. Click on the Set button to set the marker exposure.

A Marker Exposure indicator will be displayed above the Scan button.

To clear marker exposure, click on theClear button.

Setting Up a Rotary Table
Using a rotary table streamlines the scanning process. Only minimal user interaction is required to
achieve a 360° scan of a static object.

Setting Up the Hardware

To set up the hardware:

1. Ensure FlexScan3D has been installed, including the rotary driver component (installed by default).

2. Connect the cable from the table motor to one of the available ports on the controller box.

3. Plug in the power cable for the controller box.

4. Connect the USB cable between the controller box and the PC.

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Setting Up a RotaryTable • 59

Using the Software
Before the rotary table can be used in FlexScan3D, it must be calibrated.

Calibrating the Rotary Table
Once the rotary is calibrated, FlexScan3D will automatically align meshes based on the rotary position.
To calibrate the rotary, you will first need to make sure you already have a scanner connected and open.
For HDI Advance, the scanner must also be calibrated.

To calibrate the rotary table:

1. Create a new project or open an existing one.

2. On the Project tab, click the Scan button (top-left of the application window) to switch to Scan mode.
Note that a valid calibration must be open and the scanner connected. Otherwise, this button will be
disabled.

3. Click the Enable Rotary checkbox.
The software will attempt to connect to the rotary. If it succeeds, you will immediately be prompted to
calibrate. If it does not succeed, please make sure all cables are connected properly to the controller
box and PC, and also ensure that the power cord is plugged in.

4. Place a calibration board on the rotary, ensuring that it can be seen by the camera(s) and that it is not
overexposed or underexposed.
For HDI Advance scanners, the calibration board must be the exact same size as the one used during
calibration of the scanner. Otherwise, alignment will not work properly.
For HDI 120 scanners, use a 10 mm calibration board. For HDI 109 scanners, use a 5 mm calibration
board.

5. Click OK to start this calibration process.
The rotary will rotate as needed and capture images of the calibration board at various angles. A
message will be displayed informing you whether or not the calibration was successful.

If you find that scans are not aligning properly (for example, if the wrong board was used), you
can click Recalibrate to run the calibration process again.

360° Scanning
The most common use for a rotary is to achieve a complete 360° scan of an object. If the rotary is not
yet calibrated, first follow the steps for calibrating the rotary.

FlexScan3D User Manual Setting Up: HDI 100 SeriesScanners • Setting Up a RotaryTable • 60

To do a 360° scan of an object:

1. If the Enable Rotary checkbox is not checked, check it now.

2. Choose the number of desired scans.
More scans will result in better coverage, but setting this value too high may result in a lot of excess
data, which will slow down scanning and mesh operations. We recommend doing 6 to 12 scans.

3. Choose whether or not to automatically combine the scans by checking/unchecking the Auto Combine
checkbox.
Automatically combining the scans will simplify subsequent operations on the mesh, but may not be
desired in all cases. (For example, if the scans are intended to be exported for alignment in third-party
mesh processing software.)

4. Make sure the object is on the rotary table facing the scanner, and then click Scan.
Scanning, processing, and alignment may take several minutes to complete.

5. Often, you will also need to place the object on its side and run another scan to capture the bottom and
top of the object. Align to the other scans as needed.

Manual Jogging
The rotary can also be used manually. Click the rotary icon to bring up the rotary controls. If the rotary is
calibrated, new scans will get aligned based on the rotary position.

FlexScan3D User Manual 61

Capturing Scan Data

The following sections describe how to capture st.

3D Scanning Basics
Scan Quality
Scan quality is influenced by the following factors:

Scanner calibration
The more calibration scans you take, the better the accuracy of the scanner.

Environmental conditions
Light and vibration can cause inaccuracies. Ensure the system is stable and the exposure is set to the
conditions.

Stability of the scanner and the object
If either the scanner or the object move during the scan, the data will be inaccurate. Ensure both are
stable and secure.

Shape and size of the object
If the part you want to scan has limited features, you must use markers or spheres to align the data. You
also must calibrate the scanner with an appropriate lens and calibration board to suit the item.

Scan Preparation
When you set up the scanner, you should:

Understand how the scan data will be used
This determines the mechanics of the scanning process and which features, if any, should be hard
probed.

Know who will use the scanned image and what they will need captured
This eliminates unnecessary work and potential rescanning.

Scanner Positioning
When positioning the scanner to acquire the most accurate data, consider the following items:

Scanner position
Positioning the scanner perpendicular to the surface being scanned optimizes the amount data the
scanner collects. When the data is at an angle, the light can fade out as it goes farther back and the data
becomes less accurate. Also, when you are determining how to position the scanner and object, place the

FlexScan3D User Manual Capturing Scan Data • 3D Scanning Basics • 62

scanner so it can capture as much of the object as possible while remaining perpendicular to the object's
surface.

Line of sight
The scanner can capture only what is in its line of sight. If you scan a propeller, for example, it will need to
be placed so that the scanner can capture the curve of the blades and in between the blades. If the part
needs to be held at a particular location, you must decide the best method for holding the part while
scanning. Any solution should allow you to fully capture the part in one setup to minimize the amount of
repositioning.

Scanner volume and area
Depending on the lens and calibration board used, the scanner will have a defined area that can be
captured. A large part may require several scans to capture all sides and then will be stitched together
using Flexscan, Leios, or Geomagic. Each scan needs to overlap the previous section to be able to stitch
them together or there needs to be common targets on each scan set for alignment. Be sure there are
enough features to align the data.

Part Preparation
Before scanning there are two steps for part preparation: placing reference targets and coating the part.

Placing Reference Targets
For a part that has little geometry, place photogrammetric dots on the part in order to use these
features during alignment. See Scanning with Markers on page 91 for more information

Coating a Part
Reflective surfaces scatter the scanner light and create noise artifacts in the final data. Laser and white-
light scanners do better when scanning matte, white surfaces. Products called "developer", such as
Magnaflux Spotcheck Developer, which is a powder-based spray, can be used to create a flat white
surface for scanning and is available at welding supply stores. Other products you can use include some
athlete's foot treatments, spray deodorant with titanium oxide, and tempera paint from a compressor.
You can also use white spray paint if it is acceptable to create a more permanent coating.

You must spray the part with a uniform, light coat. The thinner the coating, the better. Adding more than
a thin coat of developer can impact a part's thickness when scanning. Developer comes off easily and is
prone to fingerprints. Mounting an object to a surface (such as a bolt through the center of a threaded
section) can provide a hand-hold for moving the part after spraying. You can also spray a portion of the
part (leaving a section as a hand-hold), complete the first scan, clean the part, respray the area used as a
hand-hold, and then rescan as needed.

To apply developer to a part (general procedure):

1. Apply targets before spraying.
Otherwise, the targets will slip off the white part.

2. If necessary, mount the part or decide which section to use as a hand-hold.

3. Hold the spray can of developer about 8 inches from the part and spray a light first coat.

FlexScan3D User Manual Capturing Scan Data • Setting Up Your Scan Project • 63

4. Set the object aside to dry for a few minutes.

5. Re-spray any areas that need it.

6. Clean any targets with a cotton swab before scanning if necessary.

Setting Up Your Scan Project
After you connect and calibrate your scanner, you can create or open a project, set up the project, and
then begin capturing data.

Creating a New Project

To create a new project:

1. Click the Project tab.

2. Click New Project to open the New Project dialog box.

3. Type a descriptive name in Name.

4. Click OK.

Opening an Existing Project

To open an existing project:

1. Click the Project tab.

2. Click Open Project to open the Open Project dialog box.

FlexScan3D User Manual Capturing Scan Data • Setting Up Your Scan Project • 64

3. Select the project you want to open in the Projects list.

4. Click OK.

Project Settings
You use the various panels when in Scan Mode to adjust the scan settings. See Processing Scan Data on
page 69 for more details.

To display these panels, click on Scan in theMode group.

FlexScan3D User Manual Capturing Scan Data • Setting Up Your Scan Project • 65

The following table describes the settings in these panels:

Setting Description

Meshing - Generate Selects whether you want to process the data as a Mesh, to process the data

as Points, or in the case of scanning, to capture images only and postpone

the processing step until later (Capture Only option).

Meshing - Alignment Selects the type of alignment for the data. The options are:

None: Use this option if you want to align manually.

Mesh Geometry: The geometry of the meshes will be used to automatically
align the meshes. You may still need to align meshes manually if
FlexScan3D is not able to align the meshes automatically.

Marker: Use this option if you are using markers on your target.

FlexScan3D User Manual Capturing Scan Data • Setting Up Your Scan Project • 66

Setting Description

Meshing - Clean Up Selects the type of clean-up to use on the data. The options are:

None: Not recommended.

Relaxed: Recommended for scanning hair.

Standard: Recommended for most scanning jobs.

High: Recommended for a field of view below 200 mm. Useful for scanning
mechanical components and other detailed objects.

Extreme: Recommended for a small field of view, that is, under 75 mm.
Useful for scanning coins and other finely detailed objects.

Meshing - Mesh Density Settings less than 100% will run a decimation pass to reduce the number of

vertices in the final scan.

Texture Capture Captures a separate texture image using the specified projector brightness

(HDI Advance only).

Rotary Activates the rotary table and enables it for calibration. A green checkmark

icon indicates that the rotary table is calibrated. A red exclamation point icon

indicates that the rotary table is not calibrated.

Easy Scan Determines the optimum exposure to use for scans and whether HDR and

High Sensitivity are needed. When this option is checked, the HDR and High

Sensitivity settings are ignored. After performing a scan with Easy Scan, the

exposure and HDR settings are updated based on the optimum exposure.

HDR Scans multiple times at varying exposure levels in order to capture objects

with large contrast variances.

High Sensitivity Special scanning mode which allows for capturing of difficult-to-capture noisy

surfaces, such as hair.

Auto Exposure Determines the optimum exposure to use for scans.

Scan Causes the connected scanners to scan. The Scan button changes to Easy

Scan when the Easy Scan option is checked. If a cut plane, alignment, or

marker exposure has been set, a , , or indicator will be displayed,

respectively. Right-click on an icon to display an option to remove the setting.

Live Scan Causes the connected scanners to monitor the live feed for motion, which

triggers an automatic scan (Toggle Video must be on). An initial scan

must be performed by clicking on the Scan button before motion will cause a

scan to be triggered. The motion-triggered scan is rejected if no changes

from the previous scan are detected. After clicking on Scan, the button

changes to Stop. Click on Stop to stop monitoring the live feed.

FlexScan3D User Manual Capturing Scan Data • Setting the Scanning Volume • 67

Checking the System Connection
The scanner system must be connected and active to scan using FlexScan3D. When the software is
successfully connected to the system, there will be a green light at the bottom-right of the application
status bar. If you see a red exclamation mark instead, click it to attempt to connect to the system. If
you've set up everything properly, this icon will turn green, indicating that the system is ready to scan.

Setting the Scanning Volume
Before you begin capturing data, you can optionally set the alignment of the scanners if you are using
two or more scanners. You can also set a cut plane, which causes data below the plane to be discarded in
subsequent scans.

Setting Camera Alignment for Multi-Scanner Setups
When you use two or more scanners with FlexScan3D, you can set their alignment so that future scans
are automatically aligned.

To set the alignment:

1. In the Project tab, click the Scanning Volume button.

2. Set up your target.

3. Click on the Scan button. A pair of scans, one from each scanner, will be displayed.

4. Align the scans manually.

5. In the Preset Alignment panel, click the Set Alignment button.

To remove the alignment, click on Remove Alignment.

FlexScan3D User Manual Capturing Scan Data • Setting the Scanning Volume • 68

Setting a Cut Plane
A cut plane is typically used to exclude the surface under your target from scans. This is especially useful
when scanning a target whose overall color resembles the surface the target is on. You can also set a cut
plane to exclude part of a target below the plane. For HDI 100 series scanners, cut planes are stored
based on scanner ID.

Once a cut plane has been set, it is applied to subsequent scans.

To set the cut plane:

1. In the Project tab, click the Scanning Volume button.

2. Click the Scan button.
If you are trying to exclude the scanning surface and you find that it's difficult to get a good scan of the
surface, remove the target from the surface and scan again.

3. In the resulting scan, select the part of the surface, or the part of the target itself, that you want to
exclude.
The selected area turns yellow.

4. In the Preset Cut Plane panel, set the Plane Offset (optional).

5. Click on the Set Cut Plane button.

The cut plane will appear in green. Make sure that Display Cut Planes is active by clicking on
the option's button above the 3D window.

To remove a preset cut plane, click on Remove Cut Plane.

FlexScan3D User Manual Capturing Scan Data • Scanning • 69

Scanning
After you connect your system and have the correct project settings (and, for HDI Advance systems,
have calibrated the system), you can begin scanning.

To scan:

1. Click the Scan button.
After you acquire the scan data, a thumbnail image of the scan appears in the list of scans. If you
selected Mesh in the Generate option, the corresponding mesh loads automatically.

Avoid disturbing the scanner. Even small vibrations can affect the data quality.

A single scan:

2. Take multiple scans of the object in various positions in order to capture all of the geometry.

Processing Scan Data
After you have scanned your target, you can process the scan data by choosingMesh Editor in the
Project tab,Mode group.

If you selected Mesh or Points from theGenerate option in Meshing (when in Scan mode), captured
image data is processed automatically after each scan.

FlexScan3D User Manual Capturing Scan Data • Processing Scan Data • 70

When Capture Only is selected, you will need to process the scan later. Click Build to manually generate
a mesh for a selected scan.

Processing a previously processed scan overwrites its mesh data.

Operations
Operations only apply to selected meshes. The selected meshes must be loaded for these operations to
be available.

These operations do not support point clouds and combined scans.

You can "undo" these operations by selecting the changed meshes and clicking on theBuild button in
theMeshing panel.

Smooth
The Smooth operation reduces or removes noise in selected meshes by averaging the angles between
the individual polygons. Several passes can be done with one button click by adjusting the Smoothing
Passes value next to the button.

Erode
The Erode operation removes one polygon strip from all edges in selected meshes. This is useful when
the meshes have rough edges. Several passes can be done with one button click by adjusting the
Erosion Passes value next to the button.

The operation causes all existing holes to grow larger.

Decimation
Decimation intelligently discards vertices from the currently loaded mesh, often without any noticeable
change in mesh quality. A decimated mesh requires less memory and is faster to work with than a full-
resolution mesh.

You can "undo" decimation by selecting the changed meshes and clicking on theBuild button in the
Meshing panel.

Decimating a scan will remove the color texture from the scan.

To apply decimation:

1. In the Project tab, click the Mesh Editor button.

FlexScan3D User Manual Capturing Scan Data • Using 3DWindow DisplayCommands • 71

2. Load the mesh you want to decimate, then make sure it is selected.

3. Adjust Vertices and Percent to the target values for your resulting mesh.

4. Click Decimate.

Here is an example of a decimated mesh next to the original mesh. The mesh on the left contains over
1.8 million faces. The mesh on the right is much smaller, containing just over 600k faces. As you can see,
the meshes look roughly identical, with only very minor blemishes missing in the smaller mesh.

Using 3D Window Display Commands
You can control how data is displayed in the 3D window by using the command buttons along the top of
the window.

FlexScan3D User Manual Capturing Scan Data • Manipulating and EditingMeshes • 72

Command Icon Description

Displays the data as a solid object.

Displays the data with texture information.

Displays the data as a wireframe.

Displays the data as a point cloud.

Enables specular highlighting. This setting can help see the "shape" of the

object in the 3D window.

Applies different colors to each mesh to help distinguish different meshes in

the 3D window.

Displays cut planes if they have been set.

Displays a 3D box around the scan. This setting can be useful to find stray

noise in a scan, as the bounding box will be larger than expected.

Displays a widget that helps move the scan in the 3D window.

Displays markers on the scan if markers have been used.

Toggles between selecting all the way through the model and selecting on

the surface of the model.

Displays meshes with correction for distance from the camera (creates a

slight warping at the edges). Looks more natural.

Displays meshes with no correction for distance from the camera. Useful

when comparing two similar objects side by side, but it looks somewhat

unnatural.

Recenters on the selected scan in the 3D window, or recenters on all scans if

no scans are selected.

Displays a list of scan movement commands and their corresponding mouse

and keyboard controls.

The number of vertices and faces of the data is displayed below the command buttons.

Manipulating and Editing Meshes
You can move and rotate a mesh in 3D using the mouse. TheControls menu in the 3D window lists how
to use the mouse to manipulate the mesh.

FlexScan3D User Manual Capturing Scan Data • Manipulating and EditingMeshes • 73

Selection
To select a mesh, click the mesh thumbnail in the list of scans or click anywhere on the mesh geometry of
a scan. When selected, a 3D mesh turns red.

Movement
To move everything in the 3D window, hold down both the left and right mouse buttons while moving
the mouse.

To move a single mesh, select the mesh and hold down the ALT key and both the left and right mouse
buttons while moving the mouse.

Rotation
To rotate everything in the 3D window, hold down only the left mouse button while moving the mouse.

To rotate a single mesh, select the mesh and hold down the ALT key and the left mouse buttons while
moving the mouse.

The rotation is not fixed to any particular axis. It rotates around the center of the mesh. This
may take some practice to get used to.

FlexScan3D User Manual Capturing Scan Data • Aligning andMerging Scan Data • 74

Removing Unwanted Geometry
Sometimes you will see some "extra" geometry in a processed scan, such as sections of a wall behind the
target object, the surface the object is on, etc.

To remove unwanted geometry:

1. Click on the checkbox next to a thumbnail to load the mesh that contains unwanted geometry.

2. Hold down the CTRL key and click and drag the mouse to select an area to remove.

3. Release the mouse button to select the area within the outline.
The selected area turns yellow.

4. Press the DELETE key.
You can also right-click and choose Delete.

5. Repeat steps 1 though 4 for any other unwanted geometry.

6. Select the thumbnails of the scans you modified, right-click on them, and choose Save.

Helpful Hints
l To revert to the original mesh if you have not yet saved the changes, unload the mesh by clicking on

its checkbox and chooseNo in the Save dialog.

l To revert to the original mesh if you unloaded a mesh and chose Yes in the Save dialog, select the
mesh, switch to Mesh Editor mode, and click on theBuild button .

l To add to an existing selection, hold down the CTRL key while selecting areas you want to add.

l It may be useful to click Recenter after deleting part of a mesh.

l Depending on the mesh, it is sometimes simpler to select the parts of the mesh that you want to
keep, right-click in the 3D window, choose Invert Selection, right-click again, and then choose
Delete.

Aligning and Merging Scan Data
Aligning Meshes
When you align meshes in Mesh Editor mode, FlexScan3D tries to move and rotate meshes so that
their geometries line up. After you align meshes, they are also automatically "locked." A locked mesh is in
a fixed position and orientation. That is, it cannot be moved, rotated, or edited. To move, rotate, or edit a
locked mesh (for example, if a misalignment happens during alignment), you must first unlock it. To
unlock a mesh, select it and click the Lock icon on its thumbnail to toggle the locked status. You can also
unlock scans by double clicking on the thumbnail.

There are various methods you can use to align meshes in Mesh Editor mode (see below). The type of
alignment can be specified by clicking the arrow below the line and selectingMesh Geometry, Selected
Geometry,Markers, or Fine Alignment, which are described below. This selection will be used every
time you click theAlign button above the drop-down.

FlexScan3D User Manual Capturing Scan Data • Aligning andMerging Scan Data • 75

Mesh Geometry
When aligning a mesh based on the geometry itself, you must rotate the mesh until it is in roughly the
same position and orientation as any currently locked meshes.

To align a series of meshes:

1. Load the first mesh by clicking on the checkbox next to it in the list of scans.

2. Lock this first mesh by double-clicking on the scan in the list of scans.

3. Load and select another scan.

4. While holding down the ALT key, click on a mesh and drag it to rotate the mesh to the proper
orientation.

If you need to also move the mesh, holding down the ALT key, drag the mouse while
holding down both the left and right mouse buttons.

5. Click Align after the mesh is close to the same position.
If the meshes are close enough, the mesh snaps into place, aligning with the locked mesh, and
becomes locked itself.

6. Repeat steps 1 through 5 for the other meshes.

7. Select the thumbnails of the scans you modified, right-click on them, and choose Save.

To align a mesh to the closest mesh, click on the mesh and then click on theAlign button in the
Alignment group.

Selected Geometry
In some cases, aligning using the entire mesh geometry may fail. For example, if 90% of the data in a pair
of scans is flat, normal geometry alignment may not work: everything matches so well in the flat areas
that the scans may not snap together properly. In cases like these, you should align based on selected
geometry.

To align based on selected geometry:

1. Load a scan by clicking on the checkbox next to the scan in the list of scans.

2. Lock the scan by double-clicking on its thumbnail.

3. Load and select another scan.

FlexScan3D User Manual Capturing Scan Data • Aligning andMerging Scan Data • 76

4. Load another scan and roughly align it to the first scan.

5. Change the alignment type by clicking on the Align button dropdown and choosing Selected
Geometry.

6. Select an area of the unlocked mesh by holding down the CTRL key, and clicking and dragging over the
part you want to select.
You will want to select the "interesting" geometry on the mesh, that is, an overlapping area that is not
completely flat.

7. Click Align to snap the mesh into place.

8. Select the thumbnails of the scans you modified, right-click on them, and choose Save.

Markers
With the proper setup for markers, alignment will be automatic. However, if marker alignment fails, you
can either try using Mesh Geometry alignment, or take another scan. See Scanning with Markers on page
91 for more information.

Rotary
If a rotary table is present and has been calibrated, the rotary alignment is automatically applied to each
mesh.

Preset
The Preset Alignment feature enables you to have two or more multiple scan heads' scans (all scan heads
are controlled by one computer) to align immediately after scanning. You must have multiple scanners
active to use this feature.

To set up the preset alignment:

1. Click the Scan button, ensuring a mesh is created by each scanner.

2. Align the scans.
Follow the instructions in Mesh Geometry or Selected Geometry.

3. Select the thumbnails of the scans you modified, right-click on them, and choose Save.

4. While the scans are highlighted, click Set Preset Alignment.

For subsequent multi-head scans, the preset alignment will be applied automatically.

Fine Alignment
The fine alignment feature provides a tighter and more accurate alignment. You typically would use fine
alignment when you have manually aligned your multiple scans. Generally this will be done when you are
ready to combine your meshes.

Combining Meshes
Combining meshes merges several meshes into a single mesh. You must complete this step to finalize
your model, which will allow you to resample, decimate, and hole fill. Two options are available to control

FlexScan3D User Manual Capturing Scan Data • Aligning andMerging Scan Data • 77

how meshes are combined.

TheApply Fine Alignment option causes FlexScan3D to perform a fine alignment before combining
meshes.

By default, when combining meshes, FlexScan3D averages overlapping data points and then discards
redundancies. For highly accurate scans, this is ideal for attaining the best results. For certain cases
where accuracy is not quite as good, for example when usingHigh Sensitivity mode, enable the
Preserve Overlapping Data option by clicking on the drop-down on theCombine button. During the
Finalize step using a combined mesh with overlapping data, the Smoothed Merge option can be used
to average out the overlapping geometry to provide a smooth fused result.

To combine meshes:

1. Load all of the source scans by clicking on the checkbox next to each scan in the list of scans.

2. If you want to change the options, click on the Combine button's drop-down.

3. Click on the Combine button.
A thumbnail for the newly combined mesh will be displayed. The "multiple mesh" icon next to the
thumbnail indicates that it has been combined.

Uncombining Meshes

To un-merge several meshes into their original meshes:

1. Load the combined scan from the list of scans.

2. In the main ribbon on the right, click the Uncombine button.

You will now see all of your original meshes.

FlexScan3D User Manual Capturing Scan Data • Aligning andMerging Scan Data • 78

Finalizing Meshes

To finalize a mesh:

1. Select a combined mesh from the list of scans.

2. On the far right of the main ribbon click the Finalize button.

3. The Finalize options window will appear.

4. Select the desired options (see table below), then click OK to start the finalize process.

Option Description

Precise Merge Selected by default. This mode assumes the input scans are highly accurate, and makes
only minor adjustments during the merging process. Note that this mode is
unavailable for meshes which were combined with the Preserve Overlapping Data

Finalize options

FlexScan3D User Manual Capturing Scan Data • Hole Filling • 79

Option Description

option enabled.

Smoothed Merge Takes in all the input points and outputs a smoothed average of the data.

The Smoothing slider adjusts how many points to include for creating the final mesh.
Lower sample densities will be faster to finalize and will give result in a smoother mesh;
higher densities will take longer to complete, but will also result in more accurate
results.

Hole Filling Combined meshes often contain small holes or gaps due to occlusions, where the
scanner cannot reliably see a portion of the object. This feature fills in those holes
based on the neighboring geometry. Using higher hole-filling settings will allow larger
holes to be filled.

Color Processing Provides the following options:

None: Skips the colour processing step. The final mesh will not contain any colour
information.

Color Per Vertex: Adds colour data to each point in the final mesh. Note that the
mesh density will affect the visual result, and will not look good in low density final
meshes.

Generate Single Texture: Generates complete UV-mapped texture data at the
specified resolution. A single bitmap image will be associated with the final mesh. Mesh
density does not affect the texture result. For applications which require good texture
mapping, this is the best option.

Decimate This allows for intelligent decimation of the mesh as part of the finalize process. Moving
the slider to the left will produce fewer vertices for the final mesh, and vice versa.
Decimated meshes will appear very similar to the original high-resolution mesh despite
containing significantly fewer points.

Delete Source Scans This will delete the combined mesh, including all the source scans. This may be useful in
cases where many objects are being scanned and processed, and hard drive space is a
concern. Generally though, it is recommended to leave this unchecked, since it may be
necessary to run through the finalize process with slightly different settings to achieve
the desired results. If the source scans were deleted, re-running the finalize process
would not be possible.

Hole Filling
You can interactively choose which holes are filled in Hole Filling mode. You can choose to fill holes using
Auto Fill or Fill Selected. The number of holes in the scan is displayed in the fill panel.

FlexScan3D User Manual Capturing Scan Data • Hole Filling • 80

The image below shows holes that are ideal forAuto Fill, which are generally small, and larger holes that
are ideal for manual filling using the Fill Selected function. Very large holes should not be filled using
either function. FlexScan3D uses the following hole outline colors.

l Green: Non-selected hole.

l Blue: Hole selected using Auto Fill Size slider.

l Red: Hole selected by clicking on hole outline.

Auto Fill
TheAuto Fill Size slider lets you choose the number of holes that are selected, based on the size of the
holes. Moving the slider all the way to the right selects all of the holes. Moving the slider to the left

FlexScan3D User Manual Capturing Scan Data • Hole Filling • 81

lowers the upper hole size limit and selects fewer and fewer holes. The outline of holes that are selected
are displayed in blue in the 3D window. Unselected hole outlines are displayed in green. Click on the
Auto Fill button to automatically fill the selected holes. Click on theRevert button to undo the last hole
fill.

Fill Selected Holes
You can also select individual holes by moving the mouse pointer over a hole outline and clicking on it.
Its outline will turn red. You can select multiple holes by holding the Shift key and clicking on additional
hole outlines. Then click on the Fill Selected button to fill the selected holes. Click on theRevert button
to undo the last hole fill.

Clicking on anything other than an outline in the 3D window deselects any selected holes.

Bridges
Bridges divide a hole into smaller sections and can be used to simplify overly complex holes. A hole can
be overly complex if it provides insufficient information for FlexScan3D or if its boundaries goes too far
below the plane of the majority of the hole's boundary. If FlexScan3d encounters a hole that it can't fill,
it will display an error message in the status bar.

The image below shows an example of a hole that is too complex for FlexScan3D. The side view shows
that the hole's boundary actually goes "into" the shoe model.

FlexScan3D User Manual Capturing Scan Data • Hole Filling • 82

To help FlexScan3D fill these holes, you can use bridges to break the hole down into smaller, simpler
sections.

To add a bridge:

1. Move the mouse pointer over the outline of a hole that FlexScan3D can't fill because it is too complex.

2. Click on the outline with the mouse, drag the pointer to another part of the outline, and release the
mouse button to create a smaller section.

3. Continue dividing the hole into small sections.

4. Click on the outline contained in a section to select it. Hold shift and select other sections if you have
created any others.

5. Click on Fill Selected.

It may take a few tries to find the right number and size of sections for FlexScan3D to successfully fill the
hole.

To delete a bridge:

1. Select one of the bridge's points.

2. Right-click on the point.

3. Choose Delete.

FlexScan3D User Manual Capturing Scan Data • Importing and Exporting • 83

Importing and Exporting
FlexScan3D allows you to import and export meshes.

Importing

File Formats
FlexScan3D supports importing meshes from the following formats:

l .3d3

l .stl

l .obj

Importing a Mesh
You can import a mesh into your current project. You can then use mesh-related operations such as
alignment and deviation analysis.

To import a mesh:

1. If you do not have a current project, click the Project tab and either create or open a project.

2. Click Import to open the Open dialog box.

3. Choose the file type for the model you wish to import.

4. Navigate to and select the file you want to import.

5. Click Open.

FlexScan3D User Manual Capturing Scan Data • Importing and Exporting • 84

Exporting
Exporting a mesh converts your scan data to a format compatible with 3D modelling software in case
you need to do more advanced post-processing of the geometry. The export applies to all meshes
currently loaded into the 3D window

File Formats
FlexScan3D supports exporting a mesh to the following formats:

l .3d3

l .asc (ASCII)

l .obj

l .ply

l .stl

l .fbx

l .raw

l .png

l .dep

Exporting Meshes

To export a mesh:

1. If you do not have a current project opened, click the Project tab and open a project.

2. Load one or more meshes by clicking on the checkbox next to the meshes.

3. Click the drop-down arrow next to the Export button and select the file type.

FlexScan3D User Manual Capturing Scan Data • Importing and Exporting • 85

4. Click Export to open the Browse For Folder dialog box.

5. Navigate to a location to store the meshes in an existing folder or click Make New Folder to create a
new one.

6. Click OK. The names of the exported files are the same as their respective scan names.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 86

Advanced Scanning Techniques
The following topics describe scanning techniques for various scenarios. Please note that the topics are
tailored for scanning using HDI Advance scanners, and may not apply to scanning with HDI 100 series
scanners.

Scanning with Texture
Capturing textured 3D scan is possible with just colored machine vision cameras. However, if you need a
much higher resolution scan, a digital SLR camera is recommended. This provides greater detail and
brighter color compared to machine vision cameras. Below you will discover a bit more about this
method of scanning.

Setup
In order to get the most out of using a digital camera, please follow the instructions below as seen in the
image. Ensure that your digital camera is placed just above "Cam 1". The DLSR does have to be perfectly
lined up with Cam 1. It is also recommended that they share a common field of view (FOV). In the
following example, 2 machine vision cameras plus a Canon camera are used.

Texture camera setup

Attaching the digital camera to your scanner is quite easy. A "Micro Ball Head" is used to mount the
camera onto the scanner, carefully placing it as close to "Cam 1" as possible. You will notice in the image
above that the facing direction of both Cam 1 and the digital camera are very similar. This is needed to
properly overlay the texture onto the mesh.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 87

Micro ball head

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 88

Machine vision camera and digital camera comparison

When you attach the digital camera to your computer, the drivers should automatically install.

There is a known incompatibility between Canon camera drivers and Windows 7 "N" (no media)
which is available in Europe. To resolve this, install Windows Media Player, which will also install
drivers that Canon drivers are dependent on.

Calibration
Once the hardware has been properly set up, calibration can begin. Calibrating with a texture camera is
very similar to Duo or Single scan mode; see Step-by-Step Instructions (Video) on page 28. Check to see if
the digital camera is in good focus just as you would check the machine vision cameras. Lighting plays a

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 89

big role as well, so ensure that your digital camera is bright enough to pick up the calibration board
patterns. The red square in the image below marks the section where you will choose to enable a texture
camera, as well as choose which camera to use. We recommend that you turn on the flash when
calibrating and scanning, so please use an A/C adapter that plugs the camera directly into an electrical
socket. Switching batteries while calibrating or scanning will cause you to lose that calibration due to
physically having to touch and remove the battery. See Calibrating the Scanner (Advanced Configuration)
on page 38 to adjust your aperture, shutter speed, and other settings.

Calibration view with texture camera

Scanning
Once calibrated you are able to do your first scan. This process is similar to scanning with a Single or Duo
mode. You will notice that the digital camera will flash before the machine vision cameras are activated.
The example below shows a hand scanned with just machine vision cameras:

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 90

Hand scan using machine vision cameras

The second example shows the same hand scan with texture enabled. Notice the in-depth detail when
compared to a regular scan:

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 91

Hand scan using texture

In FlexScan3D, you can switch between these two views. Simply click the button on the tool bar,
indicated by red squares below, to switch to a different view mode.

Scanning with Markers
Scanning with markers requires a duo camera configuration. It will not work with single
scanners.

Scanning with markers provides a faster and more convenient way of aligning multiple scans since the
alignment algorithm is greatly sped up by having far fewer reference points to search for and match up.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 92

Markers are generally small, round stickers (provided by LMI Technologies) that you place either on the
subject or on a movable surface the subject rests on. After scanning the subject and generating a mesh,
the scanner then searches for the markers and attempts to align them with a previous scan. If enough
matches are found, the alignment is successful and you are ready for a new scan. If not enough
matching markers are found, the alignment fails and you can either retry or use mesh geometry
alignment.

Setup
The placement of markers should be in an unique pattern, similar to stellar constellations, to make it
easy for the scanner to identify markers. If you place the markers in a regular pattern (such as a grid), the
scanner may have difficulty matching markers and fail to align scans. Please ensure the markers are
placed so both cameras can see them.

Good marker placement

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 93

Bad marker placement

There are two placement strategies that may be used: Direct (directly on the subject) or Indirect (on a
surface the subject rests on, such as a rotary table). Advanced users may use a mix of these strategies
plus mesh alignment to create a complete 3D reconstruction of the subject. To align two scans, at least 4
common markers must be matched between the two scans. This means that regardless of which
strategy you use, you must use enough markers so that there are always at least four markers visible
from both cameras during a scan.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 94

Direct Placement

Object with markers

For direct placement, you place the markers directly on the subject. This is an appropriate strategy if the
subject has enough smooth surfaces for the markers to stick to, and if the markers will not cover up any
necessary fine details. This is most useful for when you wish to create a complete reconstruction of the
subject from all angles because this does not require that the subject is fixed to a surface.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 95

Indirect Placement

Dental mold with markers on rotary table

If the subject has a lot of fine detail that cannot be concealed, or is textured in such a way that direct
placement will not work, then it is best to use indirect placement. This works by attaching the subject to a
movable surface (such as a rotary table), then place the markers on the table. The advantage of this
approach is you get to preserve maximum detail in the subject while still being able to use fast marker
alignment. The subject must remain static relative to the markers, so you can only move the surface and
never the subject itself. This creates the drawback that you will not be able to scan the underside of the
subject without starting a new mesh fragment.

Creating a complete reconstruction of a subject using indirect placement requires that multiple mesh
fragments are created that are then later aligned using mesh alignment.

Scanning
When scanning a subject with markers, the most important thing to keep in mind is that at least 4
markers must be visible to both cameras, and that alignment requires that at least 4 common markers
are found between scans. This means that during multiple scans, do not rotate the subject too far so
that the scanner is unable to match markers between consecutive scans for alignment. Therefore it is
advisable that the subject is rotated by less than 30 degrees in any direction between scans, depending
on the subject shape and marker configuration.

When using a movable surface for indirect placement, care must be taken to not allow the subject to slip
or move out of position relative to the markers.

Below is an example of 2 separate meshes merged into one using markers:

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 96

Two meshes merged using markers

Alignment
After each scan, markers will be detected and identified. If there are previous scans made using the same
markers, the scanner will automatically attempt to align the new scan with the previous ones. If it
succeeds, you may rotate the subject (or surface) and proceed to the next scan.

If it fails, then you have several options:

l Delete the scan, and rotate the subject back nearer to its previous position for a better alignment
attempt.

l Keep the scan, and either merge it with the previous scans using mesh alignment, or create a new
scan with the subject repositioned in between the last two attempts.

Scanning a Large Object
Scanning a large object simply requires the cameras to be placed on the outer slot of the HDI Advanced
Scanner. You can also manually adjust the angle of the cameras for a custom field of view.

Setup
The setup is similar to the typical HDI Advanced Scanner setup with the only difference of camera
placement. The cameras should be placed on the outer slot of the HDI mount, and a pair of 12 mm
lenses should be sufficient. Depending on the size of the object, you can manually change the camera
field of view by using a single bolt, removing the one closest to the projector and angling the cameras.
(R1x up to 1.5-meter field of view, and R3x / R4x up to 2-meter field of view.)

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 97

Large field of view with cameras on the outer slots

Calibration
In general, a larger calibration board is recommended for larger fields of view. A 25 mm calibration board
should be used in place of the 15mm calibration board. For custom angles with even larger field of view,
a 40mm calibration board is recommended. Once the hardware has been properly set up, calibration can
begin.

Calibration view

Scanning
Once your scanner is calibrated, you are able to do your first scan.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 98

Scan with a larger field of view

Scanning a Small Object
Scanning a small object simply requires the cameras to be placed on the inner slot of the HDI Advanced
Scanner or manually adjust the cameras for custom scanners.

Setup
The setup is similar to the typical HDI Advanced Scanner setup with the only difference of camera
placement. The cameras should be placed on the inner slot of the HDI mount. Depending on the object
size, 12 mm, 16 mm, or 25 mm lenses are recommended.

Small field of view with cameras on the inner slots

Calibration
In general, a small calibration board is recommended for small fields of view. A 5 mm or 10 mm
calibration board should be used in place of the 15 mm calibration board. Once the hardware has been
properly set up, calibration can begin.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 99

Calibration view

Scanning
Once your scanner is calibrated, you can do your first scan.

Scan with a smaller field of view

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 100

Scanning a Human Face
Scanning a human face simply requires the cameras to be placed on the outer slot of the HDI Advanced
Scanner.

For more tips on 3D scanning please refer to the blog post, 3 Simple Tips to Improve 3D Face Scanning
Results: http://blog.3d3solutions.com/bid/52375/3-simple-tips-to-improve-3d-face-scanning-results.

Setup
The setup is similar to the typical HDI Advanced Scanner setup with the only difference of camera
placement. The cameras should be placed on the outer slot of the HDI mount, and a pair of 12 mm
lenses should be sufficient.

Large field of view with cameras on the outer slots for a face scan

Calibration
In general, a larger calibration board is recommended for larger fields of view. A 25 mm calibration board
should be used in place of the 15 mm calibration board. Once the hardware has been properly set up,
calibration can begin.

http://blog.3d3solutions.com/bid/52375/3-simple-tips-to-improve-3d-face-scanning-results

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 101

Calibration view

Scanning
Once your scanner is calibrated, you can do your first scan. If possible, try to lean the head against a wall
or sit in a chair which can turn and get someone else to turn the person in different positions. To do full
coverage of a face, a left, front and right face scan is needed. (Or even just a left and right scan.) To get
the best results, try to maximize the field of view to capture as much as possible in a single shot.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 102

Face scan with a larger field of view

Data Cleanup/Alignment
3D face scanning can be difficult to align accurately because there is movement in between each scans:
the neck invariable changes position. By deleting the neck data and performing an alignment on just the
face will help to align the face scans more accurately.

Scanning a Mechanical Part
Scanning a mechanical part, depending on the size of the part, users may need to adjust the positions of
the cameras accordingly. For smaller parts, the cameras should be placed on the inner slot of the HDI
Advanced Scanner. And for larger parts, the cameras should be placed on the outer slot of the HDI
Advanced Scanner.

Setup
The setup is similar to the typical HDI Advanced Scanner setup with the only difference of camera
placement. For this particular setup, the cameras are placed on the middle slot of the HDI mount, and a
pair of 12 mm lenses are being used. Depending on the size of the object, users can move the cameras
to the inner or outer slots for a more suitable field of view.

Cameras on the middle slots of the HDI mount

Calibration
Depending on the field of view, different calibration board should be used accordingly. For this particular
setup, a 15 mm calibration is being used. Once the hardware has been properly set up, calibration can
begin.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 103

Calibration view

Scanning
Once your scanner is calibrated, you can do your first scan.

Scan with a larger field of view

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 104

Scanning Hair
In the past, capturing hair was an exercise in futility. For a head scan, the facial features would look great,
but the person's hair would barely be visible or it would not show up at all. Hair can be a challenge for
high-accuracy structured light scanners. It consists of very fine and partially translucent filaments which
scatter the light and are often interpreted as noise during 3D reconstruction. As a result, these areas are
usually removed from typical scan data. The High Sensitivity mode was introduced to address this
shortcoming.

This article provides some tips on acquiring usable hair scans. While it is mainly targeted at scanning
human hair, it also applies to scanning other objects, such as fuzzy clothing, stuffed animals, or dense
vegetation.

Steps

Scan
Before scanning, ensure theHigh Sensitivity checkbox above the Scan button is checked. High
sensitivity mode will fill in the holes and cracks in a scan with best guesses based on the surrounding
geometry. Also ensure that theClean Up dropdown menu is set to Relaxed. The scan data will most
likely contain some jagged areas, but with some minor editing we can end up with a great final mesh.

Raw scans, aligned

Align
Since hair scans are usually quite rough, geometry-based alignment may be unreliable for scans mainly
consisting of hair. Instead of relying on the rough hair scan data, first ensure that each scan contains
other surface information. For body scans, this can simply be the person's torso. Use the Selected
Geometry alignment feature to align to the torso. For a scan of an object which has no smooth

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 105

surfaces, such as a teddy bear or a fuzzy sweater, easily scannable items (ones with smooth and opaque
surfaces) should be strategically placed around the object. Selected Geometry alignment can then be
done by selecting the geometry of these external items.

Selected alignment setting

Combine

Save and Duplicate
Once alignment is complete, click the Save All button to write the changes to disk. Next, select all of the
meshes in the thumbnail view. (Hint: select any mesh and press CTRL-A on the keyboard to select all.)
Right-click anywhere in the thumbnail list and select Duplicate from the pop-up menu. All of the
duplicated scans will be selected. This is what we want for the next couple of steps.

Rebuild
With all of the duplicated meshes selected, click on theMesh Editor button. Change theClean Up
dropdown to theHigh setting, then click Build. This will generate a new model which only includes the
most accurate data. As a result, much of the hair will be removed, but the face should look much better.
Now we have two full copies of the data, one which we will use for the hair, and one which we will use for
the face and skin.

Initial Combine
First, ensure that Preserve Overlapping Data is checked, and that Apply Fine Alignment is
unchecked in theCombine button dropdown menu.

Combine settings

Combine all of the duplicated scans. Now, select all of the original scans and Combine those as well. You
should end up with two almost identical meshes, with the duplicated mesh containing less hair but
better facial features.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 106

Left scan: Cleanup set to High. Right scan: Cleanup set to Relaxed.

Mesh Editing
Load the combined mesh from the original data (it should be the second item in the thumbnail list) and
unload any other meshes. This mesh most likely has some oddities around the face, but since we have
the higher-quality version that we created in the previous steps, we can remove the offending geometry
from this one. When deleting the face geometry, make sure to avoid doing the sub-selection head-on,
otherwise the hair geometry may end up getting selected too. A side view of the face makes it much
easier to select without accidentally selecting the hair. If there are some other surfaces that look pretty
rough, remove those as well. When the geometry deletion is complete, click Save All.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 107

Sub-selection outline

Sub-selection highlighting

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 108

Facial features deleted

Facial features removed from the relaxed cleanup mesh

Secondary Combine
There should now be 2 combined meshes. Select both of them, load them, then click the Combine
button. Once that process is complete, the mesh is ready to be finalized.

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 109

Finalize
Select the Combined mesh and click the Finalize button. Since Preserve Overlapping Data was
enabled during the Combine phase, Finalize is limited to Smoothed Merge only (but this is what we
want anyway). For smoother results, use a lower sample density.

Suggested Finalize settings

Sample Results

Finalized mesh, rear view

FlexScan3D User Manual Capturing Scan Data • Advanced Scanning Techniques • 110

Finalized mesh, front view

Other Notes

High-Contrast Scans
For high-contrast scans (light-skinned with dark hair or dark-skinned with light hair), the camera
exposure used for capturing the skin will probably not work for capturing the hair. In these cases, either
use FlexScan3D's HDR-mode scanning, or capture the skin and the hair separately, then merge the
results afterwards.

Accuracy
WhileHigh Sensitivity mode is very useful for scanning hair, local accuracy is not guaranteed when it is
enabled. The 3D reconstruction algorithm smooths over holes and cracks in the source data, and may fill
in certain areas erroneously. As a result, it is not recommended for scanning typical surfaces.

FlexScan3D User Manual 111

API/SDK and Automation

The following sections describe the command line interface, the Rotary SDK, automation, and the
FlexScan3D DLL interface.

FlexScan3D Command Line Interface
The FlexScan3D command line interface is accessible by calling FlexScan3D.exe on the command line or
through the API DLL. A path that contains spaces must be enclosed in double quotes.

Example: Flexscan3d.exe script C:\Users\User\Documents\Scripts\MyScript.script\

To communicate from the script to the calling application, variables can be set in the script which can
then be queried using the FS3D_ScriptQuery() function after the script has completed. For more about
writing scripts, see Automation on page 118

interactive
Usage

interactive [console]
Example

Flexscan3d.exe interactive

Starts FlexScan3D in Interactive mode to allow multiple commands to be sent without starting and
stopping all the time. Including the word "console" causes FlexScan3D to open up a command-line like
console for the user to type in. Otherwise the calling application is responsible for managing the input
and output pipes. Programming languages that can read / write the standard console input / output
streams can use this interface (just ensure that all commands end with a newline (\n) character).

To test the interface we recommend using "FlexScan3D.exe interactive console"

script
Usage

script <script file>
Example

Flexscan3d.exe script C:\Users\User\Documents\Scripts\MyScript.script

Runs a script file. The path and file name can contain Unicode characters.

scriptline
Usage

scriptline <script>
Example

FlexScan3D User Manual API/SDKand Automation • FlexScan3D DLL Interface • 112

Flexscan3d.exe scriptline "a = 4"

Runs a line of script. Note: backslashes in path names will need to be escaped to work properly (replace
"\" with "\\").

scriptquery
Usage

scriptquery <script variable>
Example

Flexscan3d.exe scriptquery "a"

Returns the value of the specified script variable.

exit
Usage

exit
Example

Flexscan3d.exe exit

Requests a clean shutdown from FlexScan3D and the end of interactive mode.

FlexScan3D DLL Interface
The FlexScan3D DLL allows the calling application to start an interactive session via any programming or
scripting language that supports the loading up of DLL interfaces. The DLL also supports callbacks that
allow users to receive event and mesh data asynchronously.

You can find the include file, library, and example projects under C:\Program Files\LMI
Technologies\FlexScan3D 3.3\SDK\ScanInterface after installation.

Callbacks
Callbacks are supported in FlexScan3D version 3.3.2.178 and higher.

Initializing FlexScan3D
For basic applications, FS3D_Init should be called at the beginning to start FlexScan3D and FS3D_Exit at
the end to exit FlexScan3D. If the basic command I/O is handled separately through standard
input/output, then FlexScan3D should be started separately and the application calls FS3D_Attach and
FS3D_Detach to connect to the already running FlexScan3D instance. See below for more information
on FS3D_Init and FS3D_Exit.

Either FS3D_Init or FS3D_Attach must be called before FS3D_RegisterCallback.

Registering Callbacks
Call FS3D_RegisterCallback to register callbacks. The callback to be registered is specified by name. The
following callbacks are supported:

FlexScan3D User Manual API/SDKand Automation • FlexScan3D DLL Interface • 113

Callback Name Description

ScanProcessed Triggers immediately after a scan has been processed. Allows users to receive vertices
or faces.

MotionDetected Active when live scanning is enabled. Triggers when live scanning is enabled and motion
is initially detected.

MotionStopped Active when live scanning is enabled. Triggers when live scanning is enabled and motion
is no longer detected.

Call this function multiple times to register multiple callbacks.

To avoid writing to disk during scanning, the Scanning_WriteToDisk advanced setting must be set to
False before scanning.

Processing Callbacks
The callbacks return a FS3D handle, which is container of multiple items. The items contained depend on
the callbacks. Users can use the FS3D_Get<Property type> functions to access the contained items.

Item Name Item Type Description

gridHeight int Height of the scan grid

gridWidth int Width of the scan grid

nVertices int Number of vertices

nFaces int Number of faces

nGrid int Number of grid indices (should be the same as nVertices)

vertices double
array

Vertices in X,Y,Z sequence

faces int array Triangle faces, with 3 vertex index values per face

grids int array Grid indices with a H,W sequence per vertex

Callback: ScanProcessed

Item Name Item Type Description

scannerName string Name of the scanner which detected motion

Callback: MotionDetected

Item Name Item Type Description

scannerName string Name of the scanner which detected motion

motionDetected int Set to 1 if motion was detected, 0 if no motion was detected

Callback: MotionStopped

Memory returned through various FS3D_Get*() function parameters are accessible throughout the
scope of the callback function. There is no need to explicitly allocate or free memory.

Error Handling
Error FS3D_RESULT_WRONGTYPE will be returned if the item names or type do not match.

FlexScan3D User Manual API/SDKand Automation • FlexScan3D DLL Interface • 114

Callback Functions
See below.

C API command functions

int FS3D_Init(const char* a_PathName)
a_PathName

Full path for the FlexScan3D executable.

Starts FlexScan3D in Interactive mode and connects to the input and output pipes to allow direct control
over it. Must be called before any FS3D_Command calls. Returns FS3D_RESULT_OK on success, FS3D_
RESULT_ERROR on failure.

int FS3D_Command(const char* a_Command)
a_Command

Any interactive command for FlexScan3D.

Sends the specified command to FlexScan3D and waits for it to reply that the task is completed. Returns
FS3D_RESULT_OK if the command was successful, FS3D_RESULT_ERROR if the command was
unsuccessful, and FS3D_RESULT_UNKNOWN if the command was not recognized.

int FS3D_CommandAsync(const char* a_Command)
a_Command

Any interactive command for FlexScan3D.

Sends the specified command to FlexScan3D and returns immediately. Always returns FS3D_RESULT_
OK.

int FS3D_AsyncResult()
Used to check the result of an asynchronous command from FS3D_CommandAsync(). While the
command is still running, this function will return FS3D_RESULT_EXECUTING. For multi-threaded
applications, a "while(FS3D_CommandAsync()==FS3D_RESULT_EXECUTING)" loop can be used to
determine when the command has completed.

const char* FS3D_ScriptQuery(const char* a_Query)
a_Query

A script variable name.

Queries FlexScan3D for the current value of a script variable. Returns the value of the variable as a string,
or 0 (NULL) if the query failed. String variables are returned as-is, numbers are converted to a string
representation before being returned, and nil values are returned as "nil".

Example: For script "a = 4 * 5", FS3D_ScriptQuery("a") returns "20".

int FS3D_Attach()
Opens a direct communication pipe with a running instance of FlexScan3D. Returns FS3D_RESULT_OK
on success, FS3D_RESULT_ERROR on failure.

FlexScan3D User Manual API/SDKand Automation • FlexScan3D DLL Interface • 115

int FS3D_Detach()
Closes the communication with FlexScan3D. Returns FS3D_RESULT_OK on success, FS3D_RESULT_
ERROR on failure.

int FS3D_RegisterCallback(const char* a_FunctionName, void* userContext,
void (*a_Callback)(void* userContext, FS3D_Handle handle))
a_FunctionName

The internal function name.
userContext

Context pointer which will get passed through to the callback function.
a_Callback

A pointer to a custom function.

Registers a callback with FlexScan3D. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on
failure.

int FS3D_UnregisterCallback(const char* a_FunctionName)
a_FunctionName

The internal function name.

Unregisters a callback with FlexScan3D. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on
failure.

int FS3D_GetNumItems(const FS3D_Handle handle, int* numItems)
handle

A handle to FlexScan3D data.
numItems

Returns the number of items.

Gets the number of available named data items. Returns FS3D_RESULT_OK on success, FS3D_RESULT_
ERROR on failure.

int FS3D_GetItem(const FS3D_Handle handle, const int itemIndex, char**
itemName, char** itemType)
handle

A handle to FlexScan3D data.
itemIndex

An index into the entire item list (0-based).
itemName

Returns a text string containing the name of the item.
itemType

Returns a text string containing the internal item type.

Gets information pertaining to the item at a particular index. Returns FS3D_RESULT_OK on success,
FS3D_RESULT_ERROR on failure.

FlexScan3D User Manual API/SDKand Automation • FlexScan3D DLL Interface • 116

int FS3D_GetString(const FS3D_Handle handle, const char* itemName,
char** value)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
value

Returns the item text string.

Gets a text string. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on failure, or FS3D_
RESULT_WRONGTYPE if the item defined by itemName is not a text string.

int FS3D_GetDouble(const FS3D_Handle handle, const char* itemName,
double* value)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
value

Returns the item number value.

Gets a 64-bit floating-point value. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on
failure, or FS3D_RESULT_WRONGTYPE if the item defined by itemName is not a 64-bit floating-point
value.

int FS3D_GetFloat(const FS3D_Handle handle, const char* itemName, float*
value)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
value

Returns the item number value.

Gets a 32-bit floating-point value. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on
failure, or FS3D_RESULT_WRONGTYPE if the item defined by itemName is not a 32-bit floating-point
value.

int FS3D_GetInt(const FS3D_Handle handle, const char* itemName, int*
value)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
value

Returns the item number value.

FlexScan3D User Manual API/SDKand Automation • FlexScan3D DLL Interface • 117

Gets a 32-bit integer value. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on failure, or
FS3D_RESULT_WRONGTYPE if the item defined by itemName is not a 32-bit integer value.

int FS3D_GetDoubleArray(const FS3D_Handle handle, const char* itemName,
int* numValues, double** values)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
numValues

Returns the number of values in the array.
values

Returns the item values.

Gets an array of 64-bit floating-point values. Returns FS3D_RESULT_OK on success, FS3D_RESULT_
ERROR on failure, or FS3D_RESULT_WRONGTYPE if the item defined by itemName is not an array of 64-
bit floating-point values.

int FS3D_GetFloatArray(const FS3D_Handle handle, const char* itemName,
int* numValues, float** values)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
numValues

Returns the number of values in the array.
values

Returns the item values.

Gets an array of 32-bit floating-point values. Returns FS3D_RESULT_OK on success, FS3D_RESULT_
ERROR on failure, or FS3D_RESULT_WRONGTYPE if the item defined by itemName is not an array of 32-
bit floating-point values.

int FS3D_GetIntArray(const FS3D_Handle handle, const char* itemName, int*
numValues, int** values)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
numValues

Returns the number of values in the array.
values

Returns the item values.

Gets an array of 32-bit integer values. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on
failure, or FS3D_RESULT_WRONGTYPE if the item defined by itemName is not an array of 32-bit integer
values.

FlexScan3D User Manual API/SDKand Automation • Automation • 118

int FS3D_GetByteArray(const FS3D_Handle handle, const char* itemName,
int* numValues, unsigned char** values)
handle

A handle to FlexScan3D data.
itemName

The name of the desired item.
numValues

Returns the number of values in the array.
values

Returns the item values.

Gets an array of byte values. Returns FS3D_RESULT_OK on success, FS3D_RESULT_ERROR on failure, or
FS3D_RESULT_WRONGTYPE if the item defined by itemName is not an array of byte values.

int FS3D_Abort()
Used to abort a command while it is being executed, which can be useful for long operations such as
360-degree rotary scans. This can be used in multi-threaded applications when using FS3D_
CommandAsync(). Always returns FS3D_RESULT_OK.

int FS3D_Exit()
Shuts down the communication pipes with FlexScan3D and terminates the application. Failure to call
before terminating the calling application may result in data loss and/or error messages from
FlexScan3D. Always returns FS3D_RESULT_OK.

Automation
You can automate certain features in FlexScan3D by using scripts. Scripts are written in the Lua scripting
language. Lua allows for feature-rich scripting, including more advanced features such as loops and
custom functions. You can control calibration, scanning, and rotary movement using scripts.

To open the Script Editor, click the Show Script Editor button at the bottom-right of the status bar.
From here, you can create new scripts, edit them in a text editor (default is Notepad), and run the scripts.
The log window will let you know if any errors occurred. To see a list of available functions, type "help" in
the text box and press the Enter key (or click the Execute button).

http://www.lua.org/

FlexScan3D User Manual API/SDKand Automation • Automation • 119

SeeWorking with Scripts below for more information on general script operations.

See Functions on page 126 for a complete list of the functions.

See LUA Basics on page 122 for basic information on LUA, and Examples (page 125) for some simple
examples.

Working with Scripts

Running an Individual Command
Running an individual command is an easy way to quickly test a command without saving a new script.

To run an individual command:

1. Type the script commands into the textbox at the bottom of the script editor.

2. Click Execute or press ENTER to execute the command.

Creating a New Script

To create a new script:

1. Click New.
A Save As dialog will open. By default, the FlexScan3DScripts folder will be used, but you can choose a
different folder.

FlexScan3D User Manual API/SDKand Automation • Automation • 120

2. Type a file name for your script and click Save.

3. Edit your script in the text editor that will open.

4. Save your script when you have finished.
The script will automatically be added to the list of scripts in the New drop-down.

Editing an Existing Script

To edit an existing script:

1. Click the drop-down arrow next to the New button and select a script to load it.
You can also browse for a script by clicking Browse... in the drop-down.

2. Click Edit to open the selected script in your default text editor.
Each time you click the Edit button, the script currently selected in the New drop-down will open for
editing.

FlexScan3D User Manual API/SDKand Automation • Automation • 121

Running a Script

To run a script:

1. Click the drop-down arrow next to the New button and select a script to load it.
You can also browse for a script by clicking Browse... in the drop-down.

2. Click Run to run the selected script.
Each time you click the Run button, the script currently selected in the New drop-down will run.

3. Check the Script Output window for logged output results.

You can also run scripts from a command line. Refer to the script command-line arguments for
more information (page 112).

Setting Script Buttons and Hot Keys
You can add buttons to the FlexScan3D interface to launch functions quickly and easily. You can also set
hot keys to launch scripts. SeeWorking with Scripts on page 119 for more information on functions.

Script Buttons

To add a script button:

1. Click on the Add Script Button button in the lower right corner of FlexScan3D.

2. Navigate to the location of the script for which you want to add a button. A button will be added in the
right side of the status bar. Clicking on the button will launch the script.

FlexScan3D User Manual API/SDKand Automation • Automation • 122

To remove a script button, right click on the button and chooseRemove Button.

Hot Keys

To set hot keys to launch scripts:

1. Create a script that contains one or more calls to the SetHotKey(name, key, script, description) function.

2. Run the script.

Alternatively, you can run the function in the Script Editor.

A button and drop-down list will be added in the right side of the status bar. The drop-down list contains
a list of all active hot keys. Each time you run a script that calls the SetHotKey(name, key, script,
description) function, new hot keys will be added to the list.

Hot keys are not persistent. When you relaunch FlexScan3D, the hot keys will no longer be active.
However, you can set a script that adds hot keys to run automatically whenever FlexScan3D launches.

To automatically adds hot keys whenever FlexScan3D launches:

1. Open the Script Editor.

2. Load the script that sets hotkeys using SetHotKey(name, key, script, description).

3. In the New drop-down list, select Set As Startup Script.

Each time that FlexScan3D is launched, the script will be run and the hot keys will be added.

To remove a hot key, use the UnsetHotKey(key) function.

LUA Basics
This section covers the basics of scripting with Lua and FlexScan3D. It is not meant to be a
comprehensive guide. For more in-depth information, refer to the Lua reference manual here: Lua
Language Reference

http://www.lua.org/manual/5.1/

FlexScan3D User Manual API/SDKand Automation • Automation • 123

Debugging
To check the value of a variable, use the PrintValue() function.

a = 4

PrintValue(a)

That would display PrintValue(variable="4") in the log window. Note that some variables cannot be
displayed, such as lists. To display the contents of a list, loop through and print the values by their index
in the list (PrintValue(myList[2])).

Comments
To add a comment line into the script, place "--" as the first non-whitespace characters on a line.

-- this is a comment

Variables
Variables in Lua can be defined without needing to specify the type - Lua will automatically set the
variable to the correct type as needed.

Global
The default scope in Lua is global. These variables are persistent, so setting a variable in one script will
allow that variable to be accessed in another script.

a = true

a = 9.37

Local
For variables which will only be used within the context of the current script, the local keyword can be
specified.

local a = true

local a = 9.37

Conditionals/Booleans
To check if a statement is true or false, we can use conditional statements. Keywords include if, then,
else, elseif, and not.

a = 4 * 6

if a < 20 then

PrintValue("a is smaller than 20")

else

PrintValue("a is larger than 20")

end

a = false

FlexScan3D User Manual API/SDKand Automation • Automation • 124

if not a then

PrintValue("a is false")

end

Loops

for
Runs for a specific number of iterations in the format "for i=startIndex,endIndex,increment". If the
increment is absent, it is presumed to be 1.

for i=1,10,1 do

PrintValue(i)

end

while
Runs until a condition is no longer true.

count = 10

while count > 0 do

PrintValue(i)

count = count - 1

end

nil
Some functions will return nil. This is a null value and usually indicates that the function failed.

Strings
Text and other variables can be concatenated using ".." characters.

timeString = "The time taken was: "

totalTime = 937

PrintValue(timeString .. totalTime .. " milliseconds")

Lists
Several functions return lists. These lists are based on the .NET System.Collections.Generic.List<string>,
and can be accessed as such.

groupList = GetAllGroups()

PrintValue("There are " .. groupList.Count .. " scans in the current project.")

New lists can be created from scratch using the NewListString() function. Here is an example using Add()
(to add a single string) and AddRange() (to add a list of strings).

myList = NewListString()

FlexScan3D User Manual API/SDKand Automation • Automation • 125

myList:Add("Item 1")

myList:Add("Item 2")

newList = NewListString()

newList.AddRange(myList)

PrintValue(newList.Count)

-- displays: PrintValue(variable="2")

Examples
You can copy the following examples into a blank .script file.

This very basic script is all you need to scan.

Scan()

This script uses a loop to do a 360° scan using a rotary and an angle increment of 90° (4 scans).

increment = 90

for i=1,360,increment do

Scan()

RotaryRotate(1, increment)

end

Note that an easier way to accomplish the above example would be to use the Rotary360Scan()
function.

Often, you will want to create a new project before each scan session. To ensure a unique name, you can
use the built-in Lua date and time functions from the "os" module. The result is also checked to make
sure the project was created.

-- creates a project in the format "2012-03-23[1332532193]"

result = NewProject(os.date("%Y-%m-%d") .. "[" .. os.time() .. "]")

if not result then

PrintValue("The project was not created successfully.")

return

end

Here's a more advanced example of running several capture-only scans with a pause in between to allow
a user time to change the position of the object before the next scan - useful if a rotary is not available.
Afterwards, the script loops through all of the scan groups to process the data and create a mesh. The
built-in "os.clock()" function is also used to track the amount of time it took to complete the script.

-- start the timer

startTime = os.clock()

-- enable capture-only mode

Set("Scanning_Generation_Type", 2)

-- capture 10 scans and add them to a list

groupList = NewListString()

FlexScan3D User Manual API/SDKand Automation • Automation • 126

for i=1,10 do

result, newGroups = Scan()

-- check to make sure the scan went OK - if not, we stop the script execution

if not result then

-- show a custom error message

PrintValue("Scan #" .. i .. " failed.")

return

end

-- add the new groups to the list (usually there will only be one, but there could be

more for multi-scanner setups)

groupList:AddRange(newGroups)

-- pause for 7 seconds to allow the object to be moved/rotated

Wait(7)

end

-- get the final count of groups

groupCount = groupList.Count

-- loop through and process the new scan groups into meshes - note that list indexing

starts at 0

for i=0,groupCount-1 do

result = Process(groupList[i], 0)

-- check the result

if not result then

PrintValue("Failed to process group: " .. groupList[i]);

return

end

end

totalTime = os.clock() - startTime

PrintValue("Script completed successfully. Time taken: " .. totalTime .. " seconds")

Functions
Functions that pass file and folder names support Unicode in these names, letting you use
localized names containing non-ASCII characters.

Calibrating

AddScanner(scannerID)
Adds a scanner.

Parameters
scannerID: The ID of the scanner.

Example
AddScanner(GetScannerIDs()[0])

Returns
True if scanner was added successfully.

FlexScan3D User Manual API/SDKand Automation • Automation • 127

AddScannerByType(scannerType, serialNumber)
Adds a scanner by a given type.

Parameters
scannerType: The type of the scanner. Current valid values are "HDI" or "HDI Advance".
serialNumber: The serial number of the scanner.

Example
AddScannerByType("HDI", 12078)

Returns
True if scanner was added successfully, along with the name of the scanner added.

AutoSetExposure()
Automatically selects the exposure for all scanners and enables HDR if necessary.

Returns
true if successful, otherwise false, as well as a boolean indicating whether HDR is recommended.

ExportScanner(scannerName, fileName, preserveImages)

Parameters
scannerName: The name of a scanner.
fileName: Name of file to export scanner to. Supports Unicode characters.
preserveImages: true if calibration images should be preserved, otherwise false to minimize
space.

Example
ExportScanner("Scanner-001", "C:\Exports\Scanner.7z", true)

Returns
true if successful, otherwise false.

GetPattern(scannerName)
Gets the focus pattern of the named scanner.

Parameters
scannerName: The name of a scanner.

Example
GetPattern("Scanner-001")

Returns
The name of the current focus pattern.

GetScannerIDs()
Gets a list of all available scanner IDs.

Returns
A list of scanner IDs.

GetScannerIndexFromName(scannerName)
Gets the internal scanner index based on its name.

Parameters

FlexScan3D User Manual API/SDKand Automation • Automation • 128

scannerName: The name of a scanner.
Example

GetScannerIndexFromName("Scanner-001")
Returns

The index of the scanner in the current calibration, or -1 if it does not exist.

GetScannerNameFromIndex(scannerIndex)
Gets the name of the scanner based on its internal index in the current calibration.

Parameters
scannerIndex: A zero-based index into the list of scanners.

Example
GetScannerNameFromIndex(0)

Returns
The scanner name if successful, nil if unsuccessful.

HDI_Advance_CalculateDelayTiming(scannerName)
Auto calculate the delay timing values for a scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_Advance_CalculateDelayTiming(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_Advance_CalculateWhiteBalance(scannerName)
Auto calculate the white balance for a scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_Advance_CalculateWhiteBalance(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_Advance_Calibrate(scannerName)
Calibrates a scanner based on its calibration images.

Parameters
scannerName: The name of the scanner.

Example
HDI_Advance_Calibrate(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_Advance_CaptureCalibrationImage(scannerName)
Captures a calibration image.

FlexScan3D User Manual API/SDKand Automation • Automation • 129

Parameters
scannerName: The name of the scanner.

Example
HDI_Advance_CaptureCalibrationImage(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_Advance_DeleteCalibration(scannerName)
Deletes all calibration data in a scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_Advance_DeleteCalibration(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_Advance_DeleteCalibrationImage(scannerName, imageID)
Delete a calibration image.

Parameters
scannerName: The name of the scanner.
imageID: The id of the image to delete.

Example
HDI_Advance_DeleteCalibrationImage(GetScannerNameFromIndex(0), 15)

Returns
true if successful, false if unsuccessful.

HDI_Calibrate(scannerName)
Calibrates a scanner based on its calibration images.

Parameters
scannerName: The name of the scanner.

Example
HDI_Calibrate(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_CaptureCalibrationImage(scannerName)
Captures a calibration image.

Parameters
scannerName: The name of the scanner.

Example
HDI_CaptureCalibrationImage(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

FlexScan3D User Manual API/SDKand Automation • Automation • 130

HDI_DeleteCalibrationImage(scannerName, imageID)
Deletes a calibration image.

Parameters
scannerName: The name of the scanner.
imageID: The id of the image to delete.

Example
HDI_DeleteCalibrationImage(GetScannerNameFromIndex(0), 15)

Returns
true if successful, false if unsuccessful.

ImportScanner(fileName)
Imports a scanner from a previously exported scanner file.

Parameters
fileName: Name of file to import scanner from. Supports Unicode characters.

Example
ImportScanner("C:\Exports\Scanner.7z")

Returns
true if successful, otherwise false.

IsScannerEnabled(scannerName)
Get a scanner's enabled state. Note that the scanner must be connected first using ScannerConnnect().

Parameters
scannerName: The existing scanner name.

Example
IsScannerEnabled("Scanner1")

Returns
true if enabled, otherwise false.

RemoveScanner(scannerName)
Removes a scanner from the current calibration and deletes the local scanner data.

Parameters
scannerName: The existing scanner name.

Example
RemoveScanner("Bottom")

RemoveScanners()
Deletes the current scanner configuration, including all associated local files.

RenameScanner(scannerName, newScannerName)
Renames a scanner in the current calibration. Note that the calibration must have been created as type
"Multi".

Parameters
scannerName: The existing scanner name.

FlexScan3D User Manual API/SDKand Automation • Automation • 131

newScannerName: The new scanner name.
Example

RenameScanner("Scanner1", "Bottom")
Returns

true if successful, false if unsuccessful.

SetScannerEnabled(scannerName, enabled)
Enable or disable a scanner.

Parameters
scannerName: The name of the scanner.
enabled: true if scanner should be enabled, false for disabled.

Example
SetScannerEnabled("Scanner1", true)

Returns
true if successful, otherwise false.

ShowPattern(scannerName, patternName)
Sets the projector pattern.

Parameters
scannerName: The name of a scanner.
patternName: The name of the pattern to project.

Example
ShowPattern("Scanner-001", "Focus")

Returns
true if successful, otherwise false.

StartVideo(scannerName)
Starts live video for a scanner.

Parameters
scannerName: The name of a scanner.

Example
StartVideo("Scanner-001")

Returns
true if successful, otherwise false.

StopVideo(scannerName)
Stops live video for a scanner.

Parameters
scannerName: The name of a scanner.

Example
StopVideo("Scanner-001")

Returns
true if successful, otherwise false.

FlexScan3D User Manual API/SDKand Automation • Automation • 132

TestCalibration(scannerName)
Calculate reprojection error for a specific board.

Parameters
scannerName: The name of a scanner.

Example
TestCalibration("Scanner-001")

Returns
true if successful, false if unsuccessful, followed by the scanner and board reprojection error val-
ues respectively (in microns).

Cameras

AttachVideoWindow(scannerName, cameraID, windowHandle)
Attaches the live video feed for the specified camera to an application window handle.

Parameters
scannerName: The name of a scanner.
cameraID: The camera ID.
windowHandle: The application window handle.

Example
AttachVideoWindow("Scanner-001", 0, 51347692)

Returns
true if successful, false if unsuccessful.

DetachVideoWindow(scannerName, cameraID)
Detaches the live video feed for the specified camera.

Parameters
scannerName: The name of the scanner to get the camera from.
cameraID: The camera ID.

Example
DetachVideoWindow("Scanner-001", 0)

Returns
true if successful, otherwise false.

Configuration

HDI_AutoUpdateScanner(scannerName)
Updates to the latest scanner firmware included with this software distribution.

Parameters
scannerName: The name of the scanner.

Example
HDI_AutoUpdateScanner(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

FlexScan3D User Manual API/SDKand Automation • Automation • 133

HDI_CheckScanner(scannerName)
Determines whether the scanner firmware needs to be updated.

Parameters
scannerName: The name of the scanner.

Example
HDI_CheckScanner(GetScannerNameFromIndex(0))

Returns
0 = OK
-1 = Scanner Not Found
-2 = Scanner Not Discovered
-3 = Network Configuration Required
-4 = Firmware Update Required
-5 = Model Unsupported

HDI_GetFirmwareVersion(scannerName)
Gets the firmware version of the scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_GetFirmwareVersion(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful, as well as the firmware version of the scanner.

HDI_GetScannerHealth(scannerName)
Gets comprehensive details regarding the current state of the scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_GetScannerHealth(GetScannerNameFromIndex(0))

Returns
true if the scanner exists, false if the scanner does not exist, as well as the following details:
- temperature (degrees C)
- memory used (bytes)
- memory capacity (bytes)
- storage used (bytes)
- storage capacity (bytes)
- CPU used (%)
- netOutUsed
- netOutCapacity
- uptime (seconds)
- current state (1: Conflict, 2: Ready, 3: Running)
- camera frame error count
- camera frame drop count
- messageInDrops
- messageOutDrops.

FlexScan3D User Manual API/SDKand Automation • Automation • 134

HDI_GetScannerModel(scannerName)
Gets the internal model name of a scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_GetScannerModel(GetScannerNameFromIndex(0))

Returns
true if the scanner exists, false if the scanner does not exist, as well as the model name of the scan-
ner.

HDI_GetScannerOptionCode(scannerName)
Gets the internal option code of a scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_GetScannerOptionCode(GetScannerNameFromIndex(0))

Returns
true if the scanner exists, false if the scanner does not exist, as well as the model name of the scan-
ner.

HDI_IsUpdateRequired(scannerName)
Determines whether or not the scanner firmware needs to be updated.

Parameters
scannerName: The name of the scanner.

Example
HDI_IsUpdateRequired(GetScannerNameFromIndex(0))

Returns
true if the scanner is connected and needs a firmware update. false in all other cases.

HDI_UpdateScanner(scannerName, firmwarePath)
Updates the scanner using the firmware file at the specified path.

Parameters
scannerName: The name of the scanner.
firmwarePath: The path to the firmware file. Supports Unicode characters.

Example
HDI_UpdateScanner(GetScannerNameFromIndex(0), C:\firmware\upgrade.dat)

Returns
true if successful, false if unsuccessful.

FlexScan3D User Manual API/SDKand Automation • Automation • 135

General

DisplayString(text)
Displays a string in the status bar and/or the log file.

Parameters
text: The string to display.

Example
DisplayString("Scanners are ready.")

Get(settingName)
Gets an application setting value by name.

Parameters
settingName: An application setting name.

Example
Get("Calibrating_MinCalibrationImages")

Returns
The value of the setting as text if successful, nil if unsuccessful.

NewListString()
Utility function to allow for the creation of lists compatible with other FlexScan3D script functions. Items
(such as scan group IDs) can be added to the list using myListName:Add("Scan01").

Returns
An empty list.

PrintValue(variable)
Displays the current variable value in the log. Useful for debugging purposes.

Parameters
variable: Any variable returned from a script function.

Example
PrintValue(groupID)

QuietModeOff()
Disables quiet mode when running scripts from the script editor.

QuietModeOn()
Enables quiet mode when running scripts from the script editor. This suppresses pop-up messages that
only has an OK button. Yes/No prompts will still appear. Note that each QuietModeOn() call must be
paired with QuietModeOff().

QuietModeStackSize()
Returns the size of the quiet mode stack. This can be used to determine how many times QuietModeOff
() must be called to completely disable quiet mode.

Returns

FlexScan3D User Manual API/SDKand Automation • Automation • 136

size of quiet mode stack.

Run(fileName, arguments)
Launches an external application and waits until it closes.

Parameters
fileName: The complete path to an application. Supports Unicode characters.
arguments: Any arguments to the application.

Example
Run("C:\Windows\notepad.exe", "C:\My Scripts\My Scan.script")

Returns
true if successful, false if unsuccessful.

Set(name, value)
Sets an application setting value by name.

Parameters
name: An application setting name.
arguments: An application setting value, as text.

Example
Set("Calibrating_MinCalibrationImages", "10")

Returns
true if successful, false if unsuccessful.

SetHotKey(name, key, script, description)
Sets a hotkey to trigger a script sequence.

Parameters
name: The display name of the hotkey.
key: The hotkey to assign.
script: The script to run.
description: Further information that describes this hotkey function.

Example
SetHotKey("Scan", "Ctrl-F1", "Scan()", "Perform a scan and process.")

Returns
true if successful, otherwise false.

UnsetHotKey(key)
Unsets a hotkey.

Parameters
key: The hotkey to unassign.

Example
UnsetHotKey("Ctrl-F1")

Returns
true if successful, otherwise false.

Wait(seconds)
Pauses the script for a specified delay.

FlexScan3D User Manual API/SDKand Automation • Automation • 137

Parameters
seconds: The delay time (in seconds).

Example
Wait(1.33)

Groups

Copy(groupID, suffix)
Makes a copy of a scan group.

Parameters
groupID: A scan group ID.
suffix: A suffix to append to the new group ID.

Example
Copy("1", "copy")

Returns
true if successful, false if unsuccessful, as well as the new group ID.

DeleteAllGroups()
Deletes all scan groups in the current project.

DeleteGroup(groupName)
Deletes a scan group.

Parameters
groupName: The name of a scan group.

Example
DeleteGroup("Scan01")

DeleteSelectedGroups()
Deletes all selected scan groups in the current project.

DeselectAll()
Deselects all scan groups.

DeselectGroup(groupID)
Deselects a scan group.

Parameters
groupID: A scan group ID.

Example
DeselectGroup("1")

GetAllGroups()
Gets a list of all scan groups in the current project.

Returns
A list of all scan groups.

FlexScan3D User Manual API/SDKand Automation • Automation • 138

GetGroupAliasFromID(gid)
Gets the group alias its corresponding ID.

Parameters
gid: A group ID.

Example
GetGroupAliasFromID("1")

Returns
The group alias if found, nil if not found.

GetGroupIDFromAlias(alias)
Gets the group ID its corresponding alias.

Parameters
alias: A group ID.

Example
GetGroupIDFromAlias("Side Scan 1")

Returns
The group ID if found, nil if not found.

GetSelectedGroups()
Gets a list of selected scan groups.

Returns
A list of selected scan groups.

IsGroupLoaded(groupID)
Returns whether a scan group is loaded.

Parameters
groupID: A scan group ID.

Example
IsGroupLoaded("1")

Returns
true if the specified group is loaded, otherwise false.

IsGroupLocked(groupID)
Returns whether a scan group is locked.

Parameters
groupID: A scan group ID.

Example
IsGroupLocked("1")

Returns
true if the specified group is locked, otherwise false.

IsGroupSelected(groupID)
Returns whether a scan group is selected.

FlexScan3D User Manual API/SDKand Automation • Automation • 139

Parameters
groupID: A scan group ID.

Example
IsGroupSelected("1")

Returns
true if the specified group is selected, otherwise false.

LoadAll()
Loads all scan groups.

LoadGroup(groupID)
Loads a scan group.

Parameters
groupID: A group ID.

Example
LoadGroup("1")

Returns
true if successful, false if unsuccessful.

LoadSelected()
Loads all selected scan groups.

Returns
true if successful, false if unsuccessful.

LockGroup(groupID)
Locks a scan group.

Parameters
groupID: A scan group ID.

Example
LockGroup("1")

SaveGroup(groupID)
Saves a scan group.

Parameters
groupID: A scan group ID.

Example
SaveGroup("1")

Returns
true if successful, false if unsuccessful.

SaveGroups(groupIDs)
Saves a list of scan groups.

Parameters

FlexScan3D User Manual API/SDKand Automation • Automation • 140

groupIDs: A list of scan group IDs.
Example

SaveGroups({ "1", "2", "3", "4" })
Returns

true if successful, false if unsuccessful.

SelectAll()
Selects all scan groups.

SelectGroup(groupID)
Selects a scan group.

Parameters
groupID: A scan group ID.

Example
SelectGroup("1")

SetGroupAlias(groupID, alias)
Sets the alias of a group.

Parameters
groupID: A scan group ID.
alias: The new group alias.

Example
SetGroupAlias("1", "Side Scan 1")

Returns
true if successful, false if unsuccessful.

UnloadAll()
Unloads all scan groups.

UnloadGroup(groupID)
Unloads a scan group.

Parameters
groupID: A scan group ID.

Example
UnloadGroup("1")

UnloadSelected()
Unloads all selected scan groups.

UnlockGroup(groupID)
Unlocks a scan group.

Parameters
groupID: A scan group ID.

Example

FlexScan3D User Manual API/SDKand Automation • Automation • 141

UnlockGroup("1")

Networking

HDI_AutoConfigureNetwork(scannerName)
Automatically configures the network address of the scanner (and network adapter, if necessary).

Parameters
scannerName: The name of the scanner.

Example
HDI_AutoConfigureNetwork(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful.

HDI_GetScannerAddress(scannerName)
Changes the network address of the scanner.

Parameters
scannerName: The name of the scanner.

Example
HDI_GetScannerAddress(GetScannerNameFromIndex(0))

Returns
true if successful, false if unsuccessful, as well as the IP address, subnet mask, gateway, and DHCP
state (true/false).

HDI_SetScannerAddress(scannerName, ipAddress, subnetMask, gateway, useDHCP)
Changes the network address of the scanner.

Parameters
scannerName: The name of the scanner.
ipAddress: A network IP address.
subnetMask: A network subnet mask.
gateway: A network gateway IP address.
useDHCP: Set to true to enable DHCP on the scanner (useful when the scanner is connected to a
router, for example), or false to use a static IP.

Example
HDI_SetScannerAddress(GetScannerNameFromIndex(0), 192.168.61.51, 255.0.0.0,
192.168.61.1, false)

Returns
true if successful, false if unsuccessful.

Processing

Align()
Aligns one or more unlocked meshes to any locked meshes. Meshes must be loaded. Note that the
alignment method used is based on the Processing_Alignment_Type setting.

Returns

FlexScan3D User Manual API/SDKand Automation • Automation • 142

true if successful, false if unsuccessful.

AlignFastICP(calibDir)
Fast ICP all selected.

ClipGroup(groupID, xMin, xMax, yMin, yMax, zMin, zMax)
Removes all points outside of the specified clipping boundaries. Please note that transformations are
ignored, and combined groups are not supported.

Parameters
groupID: A scan group ID.
xMin: A minimum value for X.
xMax: A maximum value for X.
yMin: A minimum value for Y.
yMax: A maximum value for Y.
zMin: A minimum value for Z.
zMax: A maximum value for Z.

Example
ClipGroup("10", -50.0, 50.0, -50.0, 50.0, -50.0, 50.0)

Returns
true if successful, false if unsuccessful.

Combine(groups)
Combines multiple groups of one or more meshes into a single group.

Parameters
groups: A list of one or more scan group IDs.

Example
Combine({ "1", "2", "3", "4" })

Returns
true if successful, false if unsuccessful, as well as the combined group ID.

Decimate(groupList)
Applies mesh decimation to all selected scan groups. The decimated resolution is defined by the
Processing_MeshDecimationResolution application setting, where 25.0 results in approximately 25% of
the original number of vertices, and 100.0 = 100% of the original (no decimation).

Returns
true if successful, false if unsuccessful.

Deviation(referenceGroupID, targetGroupID, exportFile, pointIDs, targetPoints)
Performs a deviation between 2 meshes and exports the results to a file. This only works on single scans,
and assumes the scans are already aligned.

Parameters
referenceGroupID: The reference group ID.
targetGroupID: The target group ID.
exportFile: The file name for the exported ASCII deviation data. Supports Unicode characters.

FlexScan3D User Manual API/SDKand Automation • Automation • 143

pointIDs: Whether or not to include the point IDs in the exported data.
targetPoints: Whether or not to include the target points in the exported data.

Example
Deviation("10", "11", C:\Deviations\dev.txt, false, false)

Returns
true if successful, false if unsuccessful, as well as the maximum, minimum, maximum average, min-
imum average, absolute average, and standard deviation values, respectively.

ErodeSelected()
Applies mesh erosion to all selected scan groups. The number of erosion passes is defined by the
Processing_Erosion application setting.

Returns
true if successful, false if unsuccessful.

Export(outputDir, ext)
Exports all loaded groups except for combined groups.

Parameters
outputDir: The complete path to an existing output directory. Supports Unicode characters.
ext: The exported file type/extension. Can be ".3d3", ".asc", ".obj", ".ply", ".stl", ".png", or ".dep".
Note that when using a texture camera, OBJ, PLY, and 3D3 types will also export the texture
images, and in the case of OBJ, accompanying ".mtl" files.

Example
Export("C:\Exported Meshes\", ".obj")

Returns
A list of complete paths to the exported meshes. Any mesh which failed to export will result in a
blank entry ("").

ExportGroups(outputDir, ext, groups)
Exports all specified groups.

Parameters
outputDir: The complete path to an existing output directory. Supports Unicode characters.
ext: The exported file type/extension. Can be ".3d3", ".asc", ".obj", ".ply", ".stl", ".png", or ".dep".
Note that when using a texture camera, OBJ, PLY, and 3D3 types will also export the texture
images, and in the case of OBJ, accompanying ".mtl" files.
groups: A list of one or more scan group IDs.

Example
ExportGroups("C:\Exported Meshes\", ".obj", { "1", "2", "3", "4" })

Returns
A list of complete paths to the exported meshes. Any mesh which failed to export will result in a
blank entry ("").

Finalize(groups)
For each group, creates a unified mesh based on one or more combined meshes. This is affected by the
Processing_Merging_Type setting: if it is 0, then the existing data is used as-is; if it is 1, then the data is

FlexScan3D User Manual API/SDKand Automation • Automation • 144

resampled based on Poisson surface reconstruction. Also note that if the Processing_Finalize_
RemoveSourceData setting is false, a new scan group will be created for each group ID.

Parameters
groups: A list of one or more scan group IDs.

Example
Finalize({ "1", "2", "3", "4" })

Returns
true if successful, false if unsuccessful, as well as a list of one or more output group IDs.

FineAlign(groups, type)
Runs a thorough global alignment. Note that the meshes must already be loaded.

Parameters
groups: A list of one or more scan group IDs.
type: Alignment type. Must be 3.

Example
FineAlign({ "1", "2", "3", "4" }, 3)

Returns
true if successful, false if unsuccessful.

GetMarkers(groupID)
Gets the markers for the specified scan group.

Parameters
groupID: A scan group ID.

Example
GetMarkers("10")

Returns
true if successful, false if unsuccessful, as well as a list of marker points (untransformed). Each
item in the list consists of an X/Y/Z coordinate, stored as a 3-value array.

GetMeshDetails(groupID)
Gets information about the 3D mesh represented by the groupID.

Parameters
groupID: A scan group ID.

Example
GetMeshDetails("1")

Returns
true if successful, false if unsuccessful, as well as the number of vertices, faces, and markers,
respectively.

GetTransformation(groupID)
Gets the current transformation of the specified scan group.

Parameters
groupID: A scan group ID.

FlexScan3D User Manual API/SDKand Automation • Automation • 145

Example
GetTransformation("10")

Returns
A 4x4 3D transformation matrix, returned as an array containing all 16 values, or nil if an error
occurred.

Import(fileName, markers)
Imports a mesh.

Parameters
fileName: The complete path to a mesh file. Acceptable formats are 3D3, OBJ, and STL. Supports
Unicode characters.
markers: If this flag is true, then the imported points will be treated as a set of markers instead of
a mesh.

Example
Import("C:\Models\Car.obj", false)

Returns
The new group ID if successful, nil if unsuccessful.

MeshClean()
Cleans up.

NewTransformationMatrix()
Creates a transformation matrix.

Returns
A 4x4 3D transformation matrix, returned as an array containing 16 values.

Process(groupID, generateType)
Generates 3D data from 2D scan images.

Parameters
groupID: The scan group ID.
generateType: 0 for Mesh, 1 for Points.

Example
Process("16", 0)

Returns
true if successful, false if unsuccessful.

ProcessGroups(groups, generateType)
Generates 3D data from 2D scan images.

Parameters
groups: A list of one or more scan group IDs.
generateType: 0 for Mesh, 1 for Points.

Example
ProcessGroups({ "1", "2", "3", "4" }, 0)

Returns

FlexScan3D User Manual API/SDKand Automation • Automation • 146

true if successful, false if unsuccessful.

ReprojectUVTexture(referenceID, targetID, txtWidth, txtHeight)
Projects the texture from one group onto another.

Parameters
referenceID: A source scan group ID. The mesh must contain texture coordinates.
txtWidth: The width of the texture.
txtHeight: The height of the texture.

Returns
true if successful, false if unsuccessful.

SetCleanUpType(cleanUpType)
Set the type of clean-up on mesh generation.

Parameters
cleanUpType: A type of clean-up on meshing: 0 - None, 1 - Relaxed, 2 - Standard, 3 - High, 4 -
Extreme.

Example
SetCleanUpType(1)

SetPresetTransform(groups)
Set preset alignment based on specified prealigned scans. Assumes each group has only 1 scan.

Returns
true if successful, false if unsuccessful.

SetTransformation(groupID, matrix)
Sets the transformation of the specified scan group.

Parameters
groupID: A scan group ID.
matrix: A 4x4 matrix representing a 3D transformation.

Example
SetTransformation("10", {1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1})

Returns
true if successful, false if unsuccessful.

SmoothSelected()
Applies mesh smoothing to all selected scan groups. The number of smoothing passes is defined by the
Processing_Smoothing application setting.

Returns
true if successful, false if unsuccessful.

UnCombine(groupID)
Splits a combined group into its component groups. The output groups only contain a single mesh each.

Parameters

FlexScan3D User Manual API/SDKand Automation • Automation • 147

groupID: A combined group ID.
Example

UnCombine("10")
Returns

true if successful, false if unsuccessful, as well as a list of one or more output group IDs.

Projector

HDI_Advance_SetProjectorBrightness(scannerName, brightness)
Sets the brightness of the projector for a specific scanner.

Parameters
scannerName: The name of a scanner in the current calibration.
brightness: A brightness level from full black (0.0) to full white (1.0).

Example
HDI_Advance_SetProjectorBrightness("AdvancePlugin::1", 0.85)

HDI_Advance_ShowImage(scannerName, imageFileName)
Displays an image on the projector.

Parameters
scannerName: The name of a scanner in the current calibration.
imageFileName: The name of an image to display on the projector. Supports Unicode char-
acters.

Returns
true if successful, false if unsuccessful.

Projects

CloseProject()
Closes the current project.

Returns
true if successful, false if unsuccessful.

DeleteProject(name)
Deletes a project by name.

Parameters
name: A project name. Supports Unicode characters.

Example
DeleteProject("My Project")

Returns
true if successful, false if unsuccessful.

DeleteProjectPath(dir)
Deletes a project by complete path.

FlexScan3D User Manual API/SDKand Automation • Automation • 148

Parameters
dir: A project directory. Supports Unicode characters.

Example
DeleteProjectPath("C:\Users\User\Documents\FlexScan3D\Projects\My Project\")

Returns
true if successful, false if unsuccessful.

GetProjectNames()
Gets a list of project names.

GetProjectsPath()
Gets the projects directory (the base path where projects are stored).

LoadProject(name)
Loads a project by name.

Parameters
name: A project name. Supports Unicode characters.

Example
LoadProject("My Project")

Returns
true if successful, false if unsuccessful.

LoadProjectPath(dir)
Loads a project by complete path.

Parameters
dir: A project directory. Supports Unicode characters.

Example
LoadProjectPath("C:\Users\User\Documents\FlexScan3D\Projects\My Project\")

Returns
true if successful, false if unsuccessful.

NewProject(name)
Creates a new project by name.

Parameters
name: A project name. Supports Unicode characters.

Example
NewProject("My Project")

Returns
true if successful, false if unsuccessful.

NewProjectPath(dir)
Creates a new project by complete path.

Parameters
name: A project directory. Supports Unicode characters.

FlexScan3D User Manual API/SDKand Automation • Automation • 149

Example
NewProjectPath("C:\Users\User\Documents\FlexScan3D\Projects\My Project\")

Returns
true if successful, false if unsuccessful.

SaveProject()
Saves the current project.

Returns
true if successful, false if unsuccessful.

Rotary

GetNumMotors()

Returns
True if rotary is connected and number of motors.

IsRotaryCalibrated(scannerName)
Determines whether or not a rotary is calibrated.

Returns
true if a rotary is calibrated, false if a rotary is not calibrated.

IsRotaryConnected()
Determines whether or not a rotary is connected.

Returns
true if a rotary is connected, false if a rotary is not connected.

Rotary360Scan(motor, nScans, HDR)
Runs a 360-degree rotary scan.

Parameters
motor: The rotary motor index (1-4).
nScans: The number of scans. Ideally, this should be a factor of 360.
HDR: Scan using HDR technology.

Example
Rotary360Scan(1, 12, false)

Returns
true if successful, false if unsuccessful, as well as a list of new scan group IDs.

RotaryAlignScanner(scannerName, motor)
Does a rotary alignment on the specified scanner. Note that a calibration board must first be placed on
the rotary, facing the scanner.

Parameters
scannerName: The name of a scanner.
motor: Axis number.

FlexScan3D User Manual API/SDKand Automation • Automation • 150

Example
RotaryAlignScanner("Scanner-001", 1)

Returns
true if successful, false if unsuccessful.

RotaryCalibrate(scannerName, axis)
Calibrate the rotary table using the available rotary calibration images.

Parameters
scannerName: The name of a scanner.
axis: The axis/motor to calibrate for.

Example
RotaryCalibrate("Scanner-001", 1)

Returns
true if successful, false if unsuccessful.

RotaryCaptureCalibrationImage(scannerName)
Capture images of the calibration board for rotary table calibration.

Parameters
scannerName: The name of a scanner.

Example
RotaryCaptureCalibrationImage("Scanner-001")

Returns
true if successful, false if unsuccessful.

RotaryDeleteCalibration(scannerName)
Resets the rotary calibration.

Parameters
scannerName: The name of a scanner.

Example
RotaryDeleteCalibration("Scanner-001")

Returns
true if successful, false if unsuccessful.

RotaryGetCurrAngle(motor)

Parameters
motor: The rotary motor index (1-4).

Example
RotaryGetCurrAngle(1)

Returns
True if rotary is connected and current position of the rotary in the form of angle in degrees.

RotaryGetCurrStep(motor)

Parameters
motor: The rotary motor index (1-4).

Example

FlexScan3D User Manual API/SDKand Automation • Automation • 151

RotaryGetCurrStep(1)
Returns

True if rotary is connected and current position of the rotary in the form of steps.

RotaryGetStepsPerTurn(motor)

Parameters
motor: The rotary motor index (1-4).

Example
RotaryGetStepsPerTurn(1)

RotaryIDs()
Get a list of all available rotaries.

Returns
Autodetect all rotary tables and returns a list of rotary IDs.

RotaryMove(motor, steps)
Moves the rotary.

Parameters
motor: The rotary motor index (1-4).
steps: The number of steps to move the rotary.

Example
RotaryMove(1, 150)

Returns
true if successful, false if unsuccessful.

RotaryReset()
Resets the rotary position.

Returns
true if successful, false if unsuccessful.

RotaryRotate(motor, degrees)
Rotates the rotary.

Parameters
motor: The rotary motor index (1-4).
degrees: The number of degrees to rotate the rotary.

Example
RotaryRotate(1, 15)

Returns
true if successful, false if unsuccessful.

RotarySet(ID)
Instead of using any available rotary use one specified by ID. Set to null to revert to default behaviour.

Parameters

FlexScan3D User Manual API/SDKand Automation • Automation • 152

ID: ID of the rotary table, usually one returned by RotaryIDs().
Example

RotarySet(PluginRotaryWR::COM3)

RotarySetStepsPerTurn(motor, steps)

Parameters
motor: The rotary motor index (1-4).

Example
RotarySet(PluginRotaryWR::COM3)

Scanning

ClearMarkerExposure(scannerName)
Clears the marker exposure. Markers can still be detected using the scan exposure.

Parameters
scannerName: The name of a scanner.

Example
ClearMarkerExposure("Scanner-001")

Returns
true if successful, false if unsuccessful.

EasyScan()
Determines exposure settings, then does a scan. HDR will be used if necessary.

Returns
true if successful, false if unsuccessful, as well as a list of new scan group IDs.

GetMarkerExposure(scannerName)
Gets the exposure time for markers.

Parameters
scannerName: The name of the scanner to query the marker exposure from.

Example
GetMarkerExposure(Scanner001)

Returns
The exposure time for markers.

GetScannerExposure(scannerName)
Gets the exposure for this scanner's geometry camera(s).

Parameters
scannerName: The name of the scanner to query the exposure from.

Example
GetScannerExposure(Scanner001)

Returns
The current exposure time.

FlexScan3D User Manual API/SDKand Automation • Automation • 153

GetScannerGroup(scannerName)
Gets the scanner group.

Parameters
scannerName: The scanner name.

Example
GetScannerGroup("Scanner1")

Returns
true if successful, false if unsuccessful, as well as the name of the scanning group.

IsScannerConnected(scannerName)
Checks to see whether the specified scanner is connected.

Parameters
scannerName: The scanner name.

Example
IsScannerConnected("Scanner 1")

Returns
true if the scanner is connected, otherwise false.

Scan()
Scans into the project using the scanner(s) defined in the current calibration. Note that the Scanning_
Generation_Type setting will affect whether the resulting scan is automatically processed or not, and if
so, whether to generate a complete mesh or just a point cloud.

Returns
true if successful, false if unsuccessful, as well as a list of one or more output group IDs.

ScanHDR()
Scan the object at different exposures and combine them into one scan to get maximum data.

Returns
true if successful, false if unsuccessful, as well as a list of new scan group IDs.

ScannerConnect()
Ensures that all scanners in the current calibration are connected and working properly.

Returns
true if successful, false if unsuccessful.

SetMarkerExposure(scannerName)
Sets the marker exposure according to the current exposure value.

Parameters
scannerName: The scanner name.

Example
SetMarkerExposure("Scanner-001")

Returns

FlexScan3D User Manual API/SDKand Automation • Automation • 154

true if successful, false if unsuccessful.

SetScannerExposure(scannerName, time)
Sets the exposure for this scanner's geometry camera(s).

Parameters
scannerName: The name of the scanner to apply the exposure to.
time: The exposure time to apply (in milliseconds).

Example
SetScannerExposure(Scanner001, 16.6)

Returns
true if successful, false if unsuccessful.

SetScannerExposureSize(scannerName, size)
Sets the exposure size for this scanner's geometry camera(s).

Parameters
scannerName: The name of the scanner to apply the exposure to.
size: The exposure delta size from the minimum to maximum exposure for HDR scans (in mil-
liseconds).

Example
SetScannerExposureSize(Scanner001, 33.3)

Returns
true if successful, false if unsuccessful.

SetScannerGroup(scannerName, groupName)
Sets the scanner group. Scanners within the same group will all start capturing simultaneously.

Parameters
scannerName: The scanner name.
groupName: A logical scanning group.

Example
SetScannerGroup("Scanner1", "1")

Returns
true if successful, false if unsuccessful.

StartLiveScan()
Enable live scan mode, then begin scanning using current scan options.

Returns
true if successful, false if unsuccessful.

StopLiveScan()
Stop live scan mode, if it was enabled.

Returns
true if successful, false if unsuccessful, as well as a list of new scan group IDs acquired during live
scanning.

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 155

StopLiveScan()
Stop live scan mode, if it was enabled.

Returns
true if successful, false if unsuccessful, as well as a list of new scan group IDs acquired during live
scanning.

UI

UI_InvertSelection()
Inverts the mesh selection.

UI_Recenter()
Recenters the 3D scene.

Various

GetMemoryUsage()
Gets the memory usage of FlexScan3D.

Returns
private memory usage of FlexScan3D, in bytes.

TranslucencyCompensation(groupID, k)
Scale the scan in z direction as: z = z + k * abs(nz).

Parameters
groupID: A combined group ID.
k: Constant multiplier which is the max shift in millimeters.

Example
TranslucencyCompensation("10", 0.75)

Returns
true if successful, false if unsuccessful.

Rotary Plugin Module
The plugin SDK is included with each FlexScan3D installation starting with release 3.3.2.x. The plugin is
included in the directory C:\Program Files\LMI Technologies\FlexScan3D 3.3\SDK\PluginRotary by
default.

Use the PluginRotaryCore project to implement the communication in C/C++. For C#, use the
PluginRotaryWR project; this project implements the protocol described in the Rotary Protocol section.

Setup
You must develop your plugin using Visual Studio 2010 or later.

API
The following describes the API functions in general terms.

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 156

Required Functions

int PRC_BuildRotaryList()
Builds the list of all the available rotaries. This function is first called when FlexScan3D loads the rotary
module.

The implementation should communicate with the actual rotary to determine if the rotary is connected.

In a multi-axis system, each axis should be represented as an independent motor within a rotary
module.

Returns
The number of rotaries detected.

char* PRC_GetRotaryID(int index)
Gets the rotary name from the list of rotaries.

Parameters
index: Index of the rotary name to retrieve.

Returns
Unique rotary ID string. For example: "PluginRotaryABC::COM3", "Plu-
ginRotaryABC::IP:68.179.21.245", "PluginRotaryABC::MyRotary1".

BOOL PRC_IsConnected(const char* ID)
Determines if a rotary is connected.

Parameters
ID: Unique rotary ID string returned by PRC_GetRotaryID.

Returns
True if the function succeeds. False if the function fails.

BOOL PRC_GetNumMotors(const char* ID, int& motors)
Gets the number of motors or axes.

Parameters
ID: Unique ID string.
motors: Pointer to return the number of motors.

Returns
True if the function succeeds. False if the function fails.

BOOL PRC_GetCurrStep(const char* ID, int motor, int& step)
Gets the current step position.

Parameters
ID: Unique ID string.
motors: The number of motors.
step: The current step position. The value is between -StepsPerTurn to StepsPerTurn.

Returns
True if the function succeeds. False if the function fails.

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 157

BOOL PRC_GetStepsPerTurn(const char* ID, int motor, int& steps)
Gets the number of steps per one revolution (360 degree).

Parameters
ID: Unique ID string.
motors: Pointer to return the number of motors.
step: Pointer to return the number of steps per turn.

Returns
True if the function succeeds. False if the function fails. Returns 0 for displacement motors.

BOOL PRC_SetStepsPerTurn(const char* ID, int motor, int steps)
Sets the number of steps per one revolution (360 degree).

Parameters
ID: Unique ID string.
motors: Pointer to return the number of motors.
step: Number of steps per turn.

Returns
True if the function succeeds. False if the function fails.

BOOL PRC_Move(const char* ID, int motor, int steps)
Moves the motor forward by a fixed number of steps.

Parameters
ID: Unique ID string.
motors: Pointer to return the number of motors.
step: Number of steps to move.

Returns
True if the function succeeds. False if the function fails.

void PRC_Stop()
Stops the rotary. The function is called when FlexScan3D detaches the module.

Returns
nothing

BOOL PRC_GetMaxSpeed(const char* ID, int motor, double& speed)
Get the maximum speed of the rotary.

Parameters
ID: Unique ID string.
motors: Index to motor/axis.
speed: Maximum rotary speed. Speed should be between 0 and 1.0.

Returns
True if the function succeeds. False if the function fails.

BOOL PRC_SetMaxSpeed(const char* ID, int motor, double speed)
Set the maximum speed of the rotary.

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 158

Parameters
ID: Unique ID string.
motors: Index to motor/axis.
speed: Maximum rotary speed. Speed should be between 0 and 1.0.

Returns
True if the function succeeds. False if the function fails.

Optional Functions
These functions are already implemented, but you can override them if required.

BOOL PRC_Rotate(const char* ID, int motor, double degrees)
Moves the motor forward by a fixed number of degrees.

Parameters
ID: Unique ID string.
motors: Pointer to return the number of motors.
degrees: Number of degrees to rotate. Degrees should be between -360.0 and 360.0.

Returns
True if the function succeeds. False if the function fails.

BOOL PRC_GetCurrAngle(const char* ID, int motor, double& angle)
Returns the current position as an angle.

Parameters
ID: Unique ID string.
motors: Pointer to return the number of motors.
degrees: Current position as an angle. Angle returned is between -360.0 and 360.0.

Returns
True if the function succeeds. False if the function fails.

BOOL PRC_Reset(const char* ID)
Returns to the 0 position.

Returns
True if the function succeeds. False if the function fails.

C/C++ Specifics
The compiled PluginRotaryCore.dll should be put in the SDK\PluginRotary\PluginRotaryWrapper folder.
The C/C++ API only supports one custom rotary plugin per FlexScan3D installation.

C# Specifics
The compiled DLL should be put in the "Rotary Modules" folder in the FlexScan3D installation folder.
Multiple plugin DLLs for different motion controllers can be placed in the directory. FlexScan3D will call
the BuildRotaryList in each DLL to determine which one is applicable.

The C# implementation inherits the PluginRotary interface under the PluginRotaryInterface namespace.
The project should be setup to include the PluginRotaryInterface.dll from the FlexScan3D directory.

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 159

The following is the definition of the PluginRotary interface:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Configuration; namespace PluginRotaryInterface

{

public abstract class PluginRotary

{

//

// Default pluginID is the class name itself.

//

public virtual string pluginID { get { return GetType().Name; } }

///

////

// MANDATORY: Abstract functions are used by FlexScan3D and must implemented.

///

////

//

// Builds the list of all the available rotaries. This function is first

// called when FlexScan3D loads the rotary module.

//

// The implementation should communicate with the actual rotary to determine

// if the rotary is connected.

//

// Parameters:

// None

// Returns:

// List of rotary IDs

// Format: "pluginID::rotaryID"

//

// example:

// "MyPluginClass::Rotary1"

// "MyPluginClass::Rotary2"

//

//

public abstract List<string> rotaryIDs { get; }

//

// Determines if a rotary is connected.

// Possible to try to reconnect or connect here.

//

// Parameters:

// ID - Unique rotary ID string returned by rotaryIDs

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 160

// Returns:

// True if rotary is connected. False if rotary is not connected.

//

public abstract bool IsConnected(string ID);

//

// Gets the number of motors/axis

//

// Parameters:

// ID - Unique ID string

// motors - Returns the number of motors.

// Returns:

// True if the function succeeds. False if function fails.

//

//

public abstract bool GetNumMotors(string ID, out int motors);

//

// Gets the current step position.

//

// Parameters:

// ID - Unique ID string

// motors - Index to motor/axis

// step - Return the current step position.

// The value is between [-StepsPerTurn, StepsPerTurn]

//

// Returns:

// True if the function succeeds. False if the function fails.

//

//

public abstract bool GetCurrStep(string ID, int motor, out int step);

//

// Gets or sets the number of step per one revolution (360 degree).

// Return 0 for displacement motors.

//

// Parameters:

// ID - Unique ID string

// motors - Index to motor/axis

// step - Get or Set the number of steps per turn

//

// Returns:

// True if the function succeeds. False if the function fails.

//

//

public abstract bool GetStepsPerTurn(string ID, int motor, out int steps);

public abstract bool SetStepsPerTurn(string ID, int motor, int steps);

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 161

///

////

// generic motor steps interface

///

////

//

// Move the motor forward by fixed number of steps.

//

// Parameters:

// ID - Unique ID string

// motor - Index to motor/axis

// step - Number of steps to move per revolution

//

// Returns:

// True if the function succeeds. False if the function fails.

//

//

public abstract bool Move(string ID, int motor, int steps);

//

// Stops the rotary.

// Emergency brake

//

public abstract void Stop();

///

////

// OPTIONAL: override if necessary

///

////

//

// status functions

//

// By default FlexScan3D doesn't use these, but you can call them from scripting

// to change rotary behavior.

// // Gets or sets the maximum speed of the rotary.

//

// Parameters:

// ID - Unique ID string

// motor - Index to motor/axis

// speed - Get or set max rotary speed.

// Speed should be between 0 and 1.0.

//

// Returns:

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 162

// True if the function succeeds. False if the function fails.

//

//

public virtual bool GetMaxSpeed(string ID, int motor, out double speed) { speed =

0; return false; }

public virtual bool SetMaxSpeed(string ID, int motor, double speed) { return

false; }

//

// exposing advanced plugin settings to Flexscan (optional)

//

// public override ApplicationSettingsBase settings { get { return

Properties.Settings.Default; } }

//

public virtual ApplicationSettingsBase settings { get { return null; } }

//

// Moves the motor forward by fixed number of degrees.

// Same as Move() but in degrees.

//

// Parameters:

// ID - Unique ID string

// motor - Index to motor/axis

// degrees - Number of degrees to turn.

// Degrees should be between -360.0 to 360.0

//

// Returns:

// True if the function succeeds. False if the function fails.

//

//

public virtual bool Rotate(string ID, int motor, double degrees)

{

int stepsTurn;

if (!GetStepsPerTurn(ID, motor, out stepsTurn)) return false;

if (stepsTurn <= 0) return false; // displacement motor or not set

int steps = (int)((degrees / 360.0) * stepsTurn);

return Move(ID, motor, steps);

}

//

// Returns the current position as an angle.

//

// Parameters:

// ID - Unique ID string

// motor - Index to motor/axis

// angle - Current position in degrees.

// Angle returned is between -360.0 to 360.0

//

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 163

// Returns:

// True if the function succeeds. False if the function fails.

//

//

public virtual bool GetCurrAngle(string ID, int motor, out double angle)

{

angle = 0;

int step;

if (!GetCurrStep(ID, motor, out step)) return false;

int stepsTurn;

if (!GetStepsPerTurn(ID, motor, out stepsTurn)) return false;

if (stepsTurn == 0) return false; // displacement

angle = step * 360.0 / stepsTurn;

//tmp[i] = 360.0f; // assume step is already clamped

return true;

}

//

// Returns to the 0 position.

//

// Parameters:

// ID - Unique ID string

//

// Returns:

// True if the function succeeds. False if the function fails.

//

//

public virtual bool Reset(string ID)

{

int nMotors;

if (!GetNumMotors(ID, out nMotors)) return false;

for (int i = 1; i <= nMotors; ++i)

{

int step;

if (!GetCurrStep(ID, i, out step)) return false;

//int stepsTurn = StepsPerTurn(ID, i);

//if (stepsTurn > 0) step = stepsTurn;

if (!Move(ID, i, -step)) return false;

}

return true;

}

//

//

//

}

}

FlexScan3D User Manual API/SDKand Automation • RotaryPluginModule • 164

Rotary Protocol

General Rotary Communication Protocol
All commands sent to the rotary table use a simple character format, including the motor numbers. Parts
in commands marked as xxx are passed to the table as byte data. For example, if you want table 1 to
rotate 4 steps, instead of passing "I1M004" you pass "I1M" + (char)0 + (char)0 + (char)4

In general all commands get a reply in the form of ^XXXXXX.

Commands

V
Request the status of the rotary table. Usual reply would be ^R1R2R3R4 indicating rotary 1 ready, rotary
2 ready, etc. ^B1xxxR2R3R4 means rotary 1 is busy where xxx are 3 bytes indicates how many steps the
rotary still has to perform.

SmMxxx
Sets the speed of the motor m to xxx, where xxx is a 3 bytes of data indicating the speed. Example code:
port.Write("S1M" + (char)0 + (char)6 + (char)255); // set motor 1 to speed 1791. The standard speed
range of our rotary table is: 0x000001 to 0x0012FF (1 to 4863). Controller will respond with ^mxx
mirroring the motor number and 2 last bytes of speed setting.

ImMxxx
Turns motor m xxx number of steps. Controller will acknowledge with ^Bmxxx.

DmCWLO
Set motor number m to rotate clockwise. Each consecutive command to rotate the motor m will rotate it
clockwise.

DmCWHi
Sets rotary m to rotate counterclockwise.

EmHALT
Rotary m stop.

Rotary Sample Command Sequence
Motor numbers are passed as characters but the number of steps and speed are passed as 3 bytes of
binary for simplicity.

send: V reply: ^R1R2R3R4

send: S1M1791 reply: ^191

sned: D1CWLO reply: ^

send: I1M100 reply: ^B1100

FlexScan3D User Manual 3D3 File Format • 165

3D3 File Format

Version 8 file format
Introduced texture per face as a separate array of uv coordinates and an indexed array of triplets for
every face referencing those coordinates. This way every face can have an individual set of texture
coordinates.

int verNum3d3; // version number (should be 8)

// header info //

int gridHeight; // camera pic height

int gridWidth; // camera pic width

int textureHeight; // texture cam height

int textureWidth; // texture cam width

int traceStepH; // ignore the following 2 integers should be 1

int traceStepW;

double ccDist; // distance between the cameras in mm

int decimated; // flag 1 or 0, indicates if the mesh has been decimated at creation

// if 0 the mesh is a perfect grid and can be processed more efficiently

double edgeTol; // all edges bigger than this tolerance were discarded during mesh

generating process

// as part of the mesh cleanup procedure

// sizes //

int nVertices; // number of vertices

int nFaces; // number of faces (triangles)

int nGrid; // every point has an associated height & width of the pixel it was traced

from

// nGrid is a number of height/width coordinates nGrid == nVertices || nGrid == 0

int nUVs; // number of texture coordinates

int nFaceUVs; // number of triplets of indices for texture per face nFaceUVs == 0 ||

nFaceUVs == nFaces

// if supplied for every face there is a corresponding triplet of indices pointing to uvs

array for

// a corresponding texture coordinate

int nConfidence; // during combining all the vertices get assigned a confidence value of

how reliable

// every vertex is [0, 1] == [bad, good]

int nVertColors; // number of vertex colors nVertColors == nVertices || nVertColors == 0

// Vertices ///

FlexScan3D User Manual 3D3 File Format • 166

double points[nVertices*3]; // coordinates of all points xyz

// Faces //

int indices[nFaces*3]; // indices of all the triangles (0 indented)

// grid ///

int grid[nGrid*2]; // for every point height & width of the pixel it was traced from

// UVs //

float uvs[nUVs*2]; // u/v texture coordinates for each vertex

// FaceUVs //

int faceUVs[nFaceUVs*3]; // 3 indices pointing to uvs for corresponding texture

coordinates

// Confidence ///

float confidence[nConfidence]; // confidence value [0, 1] for each vertex

// Colors ///

byte colors[nVertColors*4]; // 4 bytes (alphe,red,green,blue)[0..255] per each vertex

Version 7 file format
Introduced color per vertex values as four bytes per vertex of alpha, red, green, blue.

int verNum3d3; // version number (should be 7)

// header info //

int gridHeight; // camera pic height

int gridWidth; // camera pic width

int textureHeight; // texture cam height

int textureWidth; // texture cam width

int traceStepH; // ignore the following 2 integers should be 1

int traceStepW;

double ccDist; // distance between the cameras in mm

int decimated; // flag 1 or 0, indicates if the mesh has been decimated at creation

// if 0 the mesh is a perfect grid and can be processed more efficiently

double edgeTol; // all edges bigger than this tolerance were discarded during mesh

generating process

// as part of the mesh cleanup procedure

// sizes //

int nVertices; // number of vertices

int nFaces; // number of faces (triangles)

int nGrid; // every point has an associated height & width of the pixel it was traced

from

// nGrid is a number of height/width coordinates nGrid == nVertices || nGrid == 0

int nUVs; // number of texture coordinates nUVs == nVertices || nUVs == 0

int nConfidence; // during combining all the vertices get assigned a confidence value of

how reliable

// every vertex is [0, 1] == [bad, good]

int nVertColors; // number of vertex colors nVertColors == nVertices || nVertColors == 0

// Vertices ///

FlexScan3D User Manual 3D3 File Format • 167

double points[nVertices*3]; // coordinates of all points xyz

// Faces //

int indices[nFaces*3]; // indices of all the triangles (0 indented)

// grid ///

int grid[nGrid*2]; // for every point height & width of the pixel it was traced from

// UVs //

float uvs[nUVs*2]; // u/v texture coordinates for each vertex

// Confidence ///

float confidence[nConfidence]; // confidence value [0, 1] for each vertex

// Colors ///

byte colors[nVertColors*4]; // 4 bytes (alphe,red,green,blue)[0..255] per each vertex

Version 6 file format
Introduced vertex confidence values. From now on every vertex has a confidence value attached to it
indicating how reliable given vertex is. Confidence values are used in the combining algorithm for
determining the true surface and discarding the false data points. Added a new value edgeTol for
internal use, description below.

int verNum3d3; // version number (should be 6)

// header info //

int gridHeight; // camera pic height

int gridWidth; // camera pic width

int textureHeight; // texture cam height

int textureWidth; // texture cam width

int traceStepH; // ignore the following 2 integers should be 1

int traceStepW;

double ccDist; // distance between the cameras in mm

int decimated; // flag 1 or 0, indicates if the mesh has been decimated at creation

// if 0 the mesh is a perfect grid and can be processed more efficiently

double edgeTol; // all edges bigger than this tolerance were discarded during mesh

generating process

// as part of the mesh cleanup procedure

// sizes //

int nVertices; // number of vertices

int nFaces; // number of faces (triangles)

int nGrid; // every point has an associated height & width of the pixel it was traced

from

// nGrid is a number of height/width coordinates nGrid == nVertices || nGrid == 0

int nUVs; // number of texture coordinates nUVs == nVertices || nUVs == 0

int nConfidence; // during combining all the vertices get assigned a confidence value of

how reliable

// every vertex is [0, 1] == [bad, good]

// Vertices ///

double points[nVertices*3]; // coordinates of all points xyz

FlexScan3D User Manual 3D3 File Format • 168

// Faces //

int indices[nFaces*3]; // indices of all the triangles (0 indented)

// grid ///

int grid[nGrid*2]; // for every point height & width of the pixel it was traced from

// UVs //

float uvs[nUVs*2]; // u/v texture coordinates for each vertex

// Confidence ///

float confidence[nConfidence]; // confidence value [0, 1] for each vertex

Version 5 file format
Added a flag decimated indicating if the mesh was decimated during creation. Non decimated meshes
can be processed more efficiently.

int verNum3d3; // version number (should be 5)

// header info //

int gridHeight; // camera pic height

int gridWidth; // camera pic width

int textureHeight; // texture cam height

int textureWidth; // texture cam width

int traceStepH; // ignore the following 2 integers should be 1

int traceStepW;

double ccDist; // distance between the cameras in mm

int decimated; // flag 1 or 0, indicates if the mesh has been decimated at creation

// if 0 the mesh is a perfect grid and can be processed more efficiently

// sizes //

int nVertices; // number of vertices

int nFaces; // number of faces (triangles)

int nGrid; // every point has an associated height & width of the pixel it was traced

from

//nGrid is a number of height/width coordinates nGrid == nVertices || nGrid == 0

int nUVs; // number of texture coordinates nUVs == nVertices || nUVs == 0

// Vertices ///

double points[nVertices*3]; // coordinates of all points xyz

// Faces //

int indices[nFaces*3]; // indices of all the triangles (0 indented)

// grid ///

int grid[nGrid*2]; // for every point height & width of the pixel it was traced from

// UVs //

float uvs[nUVs*2]; // u/v texture coordinates

Version 4 file format
int verNum3d3; // version number (should be 4)

// header info //

FlexScan3D User Manual 3D3 File Format • 169

int gridHeight; // camera pic height

int gridWidth; // camera pic width

int textureHeight; // texture cam height

int textureWidth; // texture cam width

int traceStepH; // ignore the following 2 integers should be 1

int traceStepW;

double ccDist; // distance between the cameras in mm

// sizes //

int nVertices; // number of vertices

int nFaces; // number of faces (triangles)

int nGrid; // every point has an associated height & width of the pixel it was traced

from

//nGrid is a number of height/width coordinates nGrid == nVertices || nGrid == 0

int nUVs; // number of texture coordinates nUVs == nVertices || nUVs == 0

// Vertices ///

double points[nVertices*3]; // coordinates of all points xyz

// Faces //

int indices[nFaces*3]; // indices of all the triangles (0 indented)

// grid ///

int grid[nGrid*2]; // for every point height & width of the pixel it was traced from

// UVs //

float uvs[nUVs*2]; // u/v texture coordinates

FAQ / Troubleshooting

Licensing
My license failed to activate, what do I do?
First, verify that the date on your system is correct. Then e nsure that you are logged in as the
Administrator before attempting to activate your license. Just to be safe we recommend that you right-
click on the FlexScan3D.exe and select "Run as Administrator", then simply input your provided license
ID into the input box and select "Activate".

Setup and Calibration
Why does it take a long time during the "Finding Corners" phase
of a lens capture?
There are actually several things that can affect the finding corners speed: background, exposure,
camera resolution, and CPU load.

Background
The choice of background behind the calibration board may affect the corner finding speed. Corner
finding is slightly faster against a black background than against a white background.

FlexScan3D User Manual 170

FlexScan3D User Manual FAQ / Troubleshooting • 171

Exposure
This is actually related to background because the average exposure level may be directly affected by the
scanner's exposure time and lens aperture settings. There is one additional factor to consider: the type
of material used for the calibration board. If the board is glossy or slightly reflective, then the exposure
level on the board may be uneven and/or some of the squares may get washed out. This forces the
algorithm to take longer to find all the corners.

Camera Resolution
Higher resolution images take longer to process than low-resolution images, especially when it comes to
high-resolution DSLR texture cameras. 18-megapixel and higher images may be overkill for many
scanning needs, in which case they will only serve to slow down the calibration and scanning process.
Unless you absolutely require the highest resolution texture image, consider selecting the Medium or
Small image size from the camera's setup menu.

CPU Load
A slower computer may not be able to multitask as efficiently as a higher-end computer with faster CPU
and/or more memory. We recommend that you close all unnecessary applications while calibrating and
scanning.

Calibration board reflects light onto the camera(s)
At times your calibration board may rest at a certain angle, which will cause the projector light to be
reflected onto the cameras. This will cause failed calibration images. Simply angle the calibration board
towards the cameras in a way where the light will not reflect onto the camera(s).

When doing close scans, my exposure is too bright even with the
lens f-stop and cameras exposure set to the darkest settings
In this case you will need to lower the brightness on your projector. Overexposed areas will appear red in
the live camera feed. Adjust the projector brightness slider until the exposure is at an acceptable level.

FlexScan3D User Manual FAQ / Troubleshooting • 172

Which type (black-and-white or gray) of calibration board should
I use to calibrate my Single and Duo scanner?
We recommend you use only the gray scale calibration board for calibrating in Single scan mode.
However for Duo scan mode you are able to use either the black-and-white or the grayscale calibration
board.

Cameras
Can I 3D scan with digital DSLR cameras, HD camcorders, or web
cameras?
We do not support 3D scanning with these devices.

In the past, we have had hundreds of users attempt to use a wide variety of cameras but have found
that the results were often unusable. Even with good results, the difficulty in achieving those results was
not practical for everyday scanning. Given that a good pair of machine vision cameras are relatively
inexpensive, work in a stable manner, and return high quality results, using other types of equipment is
strongly discouraged.

Can I scan with a non-matching pair of cameras?
For Duo camera mode, we always suggest using a pair of the same cameras. You could consider different
cameras as long as the size of the image returned is exactly the same.

Why can't I just set the aperture to the widest setting (lowest f-
number) possible, and just adjust the exposure in the software?
Changing the aperture also affects the focus depth of field. The wider the aperture is, the narrower the
depth of field will be. You need to consider this when choosing an object to scan. If the object is too long
(either towards or away from the camera), not all of it may be in focus and it will be blurry in the images.
This will reduce the mesh quality and add undesirable results.

My Canon Digital Camera is not being recognized by Windows 7 N
64-bit
The 64-bit version of Windows 7 N does not include the media pack required to properly install the
Canon drivers. Please download and install the Windows Media Player pack. After the installation please
reboot your system and connect your Canon camera to your PC. The drivers should now properly install.

My uEye camera is functioning slower than expected and is not
performing properly
Support for uEye cameras has been removed in FlexScan3D 3.2. If your scanner uses a pair of uEye
cameras, please use FlexScan3D 3.1.

FlexScan3D User Manual FAQ / Troubleshooting • 173

FlexScan3D crashes or my cameras won't respond when I plug in
Firewire cameras
The most common cause of this is there is insufficient bandwidth on the Firewire card (or adapter for
laptops) for streaming data from the camera(s). This can be fixed by reducing the framerate setting on
the camera(s).

For a duo scanner, we highly recommend that you have a dual bus Firewire card. This means each
camera will have its bus to the system, and will not interfere with each other. Most single bus Firewire
cards may have multiple ports, but all devices share the same bus, causing bandwidth to be split
between the devices. Avoid single bus cards!

If you do have a dual bus Firewire card, but are still having issues with a duo scanner system: Plug in only
one camera, set its framerate to a lower setting (such as 7.5Hz if available) via the Advanced Camera
Settings. Remove the camera and plug in the other camera and repeat. Now, you should be able to have
both cameras plugged in and working.

Below is an example of the error message you may see:

PointGrey bandwidth error

Windows 10
Windows 10 doesn't install the camera drivers
On some Windows 10 machines, the camera drivers do not automatically install. If this happens, you
must manually install the drivers.

Tomanually install camera drivers:

1. Press Windows key + Pause/Break key.

2. Click Device Manager on the left side of the Control Panel.

3. Find the unknown USB devices.

Windows indicates unknown devices with a yellow question mark.

4. Right-click one of the devices and choose Update Driver Software.

5. Browse My Computer for the driver software.

FlexScan3D User Manual FAQ / Troubleshooting • 174

The default path is C:\Program Files\Point Grey Research\FlyCapture2\driver64.

6. Make sure Include subfolders is checked, and click Next.

7. After the camera drivers install, reboot your computer.

Does Windows 10 support Nikon cameras?
Early versions of Windows 10 did not support Nikon cameras. Windows 10, as of December 2015, fully
supports Nikon cameras. Make sure to upgrade Windows 10 to the latest service release.

Scanning
Below is a list of common 3D problems that people run in to and a list of likely causes.

No Data
l The projector was off.

l The cameras did not capture any images.

l Images were captured out of sync with the projector.

The majority of the time, the camera images were out of sync with the projector. Your best bet is to
increase the delays for the camera timings so that there is more time to synchronize the cameras to the
projector.

Noisy Data
l Camera underexposure or overexposure (examples).

l Reflective, transparent, or very dark material surface.

l Sensor noise (High ISO, gain, or gamma settings).

Wave Patterns
This is one of the most difficult problems to fix because its cause can be any one of several completely
different issues. The wavy patterns occur because the patterns that are projected and then decoded
have been corrupted along the way, sometimes in subtle ways that are not visible to the naked eye. This
causes the decoding process to partially fail and then artifacts appear as small wave patterns in your
scan data.

l Out of focus projector (Solution).

l Camera underexposure or overexposure.

l Subject moved during scanning; even the slightest movement will affect the scan.

l Not enough distance between the cameras.

l Camera's exposure was not a multiple of the projector refresh rate.

FlexScan3D User Manual FAQ / Troubleshooting • 175

l Hot air from the projector blows in front of one or more of the cameras.

l Images were captured out of sync with the projector (Solution).

Misaligned Textures
When scanning with a texture camera you may experience misaligned textures over-top of your mesh.
The root cause for most of this is simply that the texture camera may have been moved slightly during
or after calibration or scanning. This is why we recommend you use a power adapter plugged into an
outlet to provide a constant supply of power to the camera. For more information on using your texture
camera, see See Scanning with Texture on page 86.

Markers
At times the markers on your object will not be seen by FlexScan3D, here are a few causes and solutions:

Marker alignment failed
FlexScan3D requires a minimum of 4 markers to be seen by BOTH cameras, if 1 of your cameras fails to
see 1 of the 4 markers you will be informed that the minimum amount required was not found. Simply
make sure that both cameras see at least 4 markers in clear view.

FlexScan3D is taking a long time finding the markers
This is caused by placing too many markers on your scan object. We recommend a minimum of 4 and a
maximum of 10 to 15. Simply remove the extra markers and re-scan.

Tutorial Videos

Live Scanning: New Feature in FlexScan3D v3.3 Software
watch

Automated Mesh Geometry Alignment: New Feature in FlexScan3D v3.3 Software
watch

Cut Plane: New Feature in FlexScan3D v3.3 Software
watch

Easy Scan: New Feature in FlexScan3D v3.3 Software
watch

Interactive Hole Filling: New Feature in FlexScan3D v3.3 Software
watch

Automating the 3D Scanning Process Using Multiple HDI 120 3D Scanners
watch

FlexScan3D 3.1 3D Scanner Software: Improvements
watch

Single Scanner Calibration
watch

Duo Scanner Calibration
watch

FlexScan3D Version 3.0 Overview
watch

Tune Calibration
watch

Photogrammetry Alignment
watch

High Resolution Color Texture Capture
watch

Deviation Analysis
watch

FlexScan3D User Manual 176

https://www.youtube.com/watch?v=XswBrze6KL0
https://www.youtube.com/watch?v=u-J1agMbKK0
https://www.youtube.com/watch?v=WXeyBfEfxyA
https://www.youtube.com/watch?v=TshbaeqZIcQ
https://www.youtube.com/watch?v=z4iHvIbK7B0
https://www.youtube.com/watch?v=Mxl70pXz8bY
https://www.youtube.com/watch?v=70vDeJKw3nQ
https://www.youtube.com/watch?v=xGqup69BP1k
https://www.youtube.com/watch?v=UL1PNmT18Ns
https://www.youtube.com/watch?v=STVohz-W8YA
https://www.youtube.com/watch?v=orBI0uhww1E
https://www.youtube.com/watch?v=QVI1zmOmH5U
https://www.youtube.com/watch?v=Y7T7GdwqEus
https://www.youtube.com/watch?v=ZCdylSZFerQ

Glossary

A
aperture

Controls the size of the hole through which light can pass. (See Aperture on Wikipedia for more
information.)

C
calibration

Uses a known measurement (calibration board) to define the correspondence between the cam-
era(s) and the projector(s).

calibration board
A highly accurate image usually consisting of a grid of alternating black and white squares (check-
erboard) of a known size.

D
decimation

This is used in order to decrease the polygon count of a mesh while preserving key details.

E
erosion

This removes polygons at the edges of a mesh in cases where the edge data is noisy.

M
megapixels (camera resolution)

A rough estimate of how many pixels are contained in each image taken by the camera. For
example, a "2 megapixel" camera has 1600x1200 (1,920,000) pixels.

multi-scanner
A system of scanners which sequentially acquires scan data of a single object from multiple pos-
itions.

S
scanner

A system consisting of a projector and one or more cameras in fixed positions.
shutter speed

Controls the duration that the shutter remains open while capturing an image. (Wikipedia - Shut-
ter Speed)

smoothing
Reduces the intensity of bumps and spikes on mesh surfaces.

Z
Z-near / Z-far

FlexScan3D User Manual 177

http://en.wikipedia.org/wiki/Aperture

FlexScan3D User Manual Glossary • 178

Defines a distance envelope from the scanner to the scanning target area. Geometry points closer
than the Z-near value or farther away than the Z-far value are discarded.

	Copyright
	End User License Agreement
	Table of Contents
	Introduction
	Getting Started
	System Requirements
	Installation
	Activation and Upgrades
	Activation
	Installation Key
	Dongle Key
	Activating a Dongle

	Licensing
	Viewing Your License
	Upgrading Your Licence

	Interface Language

	Setting Up: HDI Advance Scanners
	Connecting Your Computer and Projector
	Windows 7 and 8
	Steps to Get Started on 3D Scanning
	Setting Up Your 3D Scanning Environment
	Final Thoughts

	Adding a Scanner
	Calibration Overview
	Scanner Types
	Duo
	Single
	Scanner Type Quick Comparison Chart

	Step-by-Step Instructions (Video)
	Single Scanner Calibration
	Duo Scanner Calibration

	Configuring the Calibration
	Capture Settings
	Selecting Cameras
	Selecting a Projector

	Other Settings
	Selecting the Calibration Board
	Setting Filters

	Adjusting Your Equipment
	Scanner Menu Bar
	Camera Exposure
	Exposure Calibration
	Fine-Tuning Exposure

	A Note About Aperture
	Aperture Examples

	Marker Exposure
	Setting the Focus
	Projector
	Camera

	Calibrating the Scanner (Advanced Configuration)
	Point Grey Research (Flea or Grasshopper)
	Canon
	Nikon

	Capturing Calibration Images
	Examples
	Good Calibration Images
	Bad Calibration Images
	Finishing Calibrating

	Confirming the Calibration
	Setting Up a Rotary Table
	Setting Up the Hardware
	Using the Software
	Calibrating the Rotary Table

	360° Scanning
	Manual Jogging

	Setting Up: HDI 100 Series Scanners
	HDI 100 Series Scanner Configuration
	Updating the Firmware
	Network Configuration

	Adjusting Your Equipment
	Scanner Menu Bar
	Camera Exposure
	Fine-Tuning Exposure

	Marker Exposure

	Setting Up a Rotary Table
	Setting Up the Hardware
	Using the Software
	Calibrating the Rotary Table

	360° Scanning
	Manual Jogging

	Capturing Scan Data
	3D Scanning Basics
	Scan Quality
	Scan Preparation
	Scanner Positioning
	Part Preparation
	Placing Reference Targets
	Coating a Part

	Setting Up Your Scan Project
	Creating a New Project
	Opening an Existing Project
	Project Settings
	Checking the System Connection

	Setting the Scanning Volume
	Setting Camera Alignment for Multi-Scanner Setups
	Setting a Cut Plane

	Scanning
	Processing Scan Data
	Operations
	Smooth
	Erode

	Decimation

	Using 3D Window Display Commands
	Manipulating and Editing Meshes
	Selection
	Movement
	Rotation
	Removing Unwanted Geometry
	Helpful Hints

	Aligning and Merging Scan Data
	Aligning Meshes
	Mesh Geometry
	Selected Geometry
	Markers
	Rotary
	Preset
	Fine Alignment

	Combining Meshes
	Uncombining Meshes
	Finalizing Meshes

	Hole Filling
	Auto Fill
	Fill Selected Holes
	Bridges

	Importing and Exporting
	Importing
	File Formats
	Importing a Mesh

	Exporting
	File Formats
	Exporting Meshes

	Advanced Scanning Techniques
	Scanning with Texture
	Setup
	Calibration
	Scanning

	Scanning with Markers
	Setup
	Direct Placement
	Indirect Placement
	Scanning
	Alignment

	Scanning a Large Object
	Setup
	Calibration
	Scanning

	Scanning a Small Object
	Setup
	Calibration
	Scanning

	Scanning a Human Face
	Setup
	Calibration
	Scanning
	Data Cleanup/Alignment

	Scanning a Mechanical Part
	Setup
	Calibration
	Scanning

	Scanning Hair
	Steps
	Scan

	Align
	Combine
	Save and Duplicate
	Rebuild
	Initial Combine
	Mesh Editing
	Secondary Combine

	Finalize
	Sample Results

	Other Notes
	High-Contrast Scans
	Accuracy

	API/SDK and Automation
	FlexScan3D Command Line Interface
	interactive
	script
	scriptline
	scriptquery
	exit

	FlexScan3D DLL Interface
	Callbacks
	Initializing FlexScan3D
	Registering Callbacks
	Processing Callbacks
	Error Handling
	Callback Functions

	C API command functions
	int FS3D_Init(const char* a_PathName)
	int FS3D_Command(const char* a_Command)
	int FS3D_CommandAsync(const char* a_Command)
	int FS3D_AsyncResult()
	const char* FS3D_ScriptQuery(const char* a_Query)
	int FS3D_Attach()
	int FS3D_Detach()
	int FS3D_RegisterCallback(const char* a_FunctionName, void* userContext, void...
	int FS3D_UnregisterCallback(const char* a_FunctionName)
	int FS3D_GetNumItems(const FS3D_Handle handle, int* numItems)
	int FS3D_GetItem(const FS3D_Handle handle, const int itemIndex, char** itemNa...
	int FS3D_GetString(const FS3D_Handle handle, const char* itemName, char** value)
	int FS3D_GetDouble(const FS3D_Handle handle, const char* itemName, double* va...
	int FS3D_GetFloat(const FS3D_Handle handle, const char* itemName, float* value)
	int FS3D_GetInt(const FS3D_Handle handle, const char* itemName, int* value)
	int FS3D_GetDoubleArray(const FS3D_Handle handle, const char* itemName, int* ...
	int FS3D_GetFloatArray(const FS3D_Handle handle, const char* itemName, int* n...
	int FS3D_GetIntArray(const FS3D_Handle handle, const char* itemName, int* num...
	int FS3D_GetByteArray(const FS3D_Handle handle, const char* itemName, int* nu...
	int FS3D_Abort()
	int FS3D_Exit()

	Automation
	Working with Scripts
	Running an Individual Command
	Creating a New Script
	Editing an Existing Script
	Running a Script
	Setting Script Buttons and Hot Keys
	Script Buttons
	Hot Keys

	LUA Basics
	Debugging
	Comments
	Variables
	Global
	Local

	Conditionals/Booleans
	Loops
	for
	while

	nil
	Strings
	Lists

	Examples
	Functions
	Calibrating
	AddScanner(scannerID)
	AddScannerByType(scannerType, serialNumber)
	AutoSetExposure()
	ExportScanner(scannerName, fileName, preserveImages)
	GetPattern(scannerName)
	GetScannerIDs()
	GetScannerIndexFromName(scannerName)
	GetScannerNameFromIndex(scannerIndex)
	HDI_Advance_CalculateDelayTiming(scannerName)
	HDI_Advance_CalculateWhiteBalance(scannerName)
	HDI_Advance_Calibrate(scannerName)
	HDI_Advance_CaptureCalibrationImage(scannerName)
	HDI_Advance_DeleteCalibration(scannerName)
	HDI_Advance_DeleteCalibrationImage(scannerName, imageID)
	HDI_Calibrate(scannerName)
	HDI_CaptureCalibrationImage(scannerName)
	HDI_DeleteCalibrationImage(scannerName, imageID)
	ImportScanner(fileName)
	IsScannerEnabled(scannerName)
	RemoveScanner(scannerName)
	RemoveScanners()
	RenameScanner(scannerName, newScannerName)
	SetScannerEnabled(scannerName, enabled)
	ShowPattern(scannerName, patternName)
	StartVideo(scannerName)
	StopVideo(scannerName)
	TestCalibration(scannerName)

	Cameras
	AttachVideoWindow(scannerName, cameraID, windowHandle)
	DetachVideoWindow(scannerName, cameraID)

	Configuration
	HDI_AutoUpdateScanner(scannerName)
	HDI_CheckScanner(scannerName)
	HDI_GetFirmwareVersion(scannerName)
	HDI_GetScannerHealth(scannerName)
	HDI_GetScannerModel(scannerName)
	HDI_GetScannerOptionCode(scannerName)
	HDI_IsUpdateRequired(scannerName)
	HDI_UpdateScanner(scannerName, firmwarePath)

	General
	DisplayString(text)
	Get(settingName)
	NewListString()
	PrintValue(variable)
	QuietModeOff()
	QuietModeOn()
	QuietModeStackSize()
	Run(fileName, arguments)
	Set(name, value)
	SetHotKey(name, key, script, description)
	UnsetHotKey(key)
	Wait(seconds)

	Groups
	Copy(groupID, suffix)
	DeleteAllGroups()
	DeleteGroup(groupName)
	DeleteSelectedGroups()
	DeselectAll()
	DeselectGroup(groupID)
	GetAllGroups()
	GetGroupAliasFromID(gid)
	GetGroupIDFromAlias(alias)
	GetSelectedGroups()
	IsGroupLoaded(groupID)
	IsGroupLocked(groupID)
	IsGroupSelected(groupID)
	LoadAll()
	LoadGroup(groupID)
	LoadSelected()
	LockGroup(groupID)
	SaveGroup(groupID)
	SaveGroups(groupIDs)
	SelectAll()
	SelectGroup(groupID)
	SetGroupAlias(groupID, alias)
	UnloadAll()
	UnloadGroup(groupID)
	UnloadSelected()
	UnlockGroup(groupID)

	Networking
	HDI_AutoConfigureNetwork(scannerName)
	HDI_GetScannerAddress(scannerName)
	HDI_SetScannerAddress(scannerName, ipAddress, subnetMask, gateway, useDHCP)

	Processing
	Align()
	AlignFastICP(calibDir)
	ClipGroup(groupID, xMin, xMax, yMin, yMax, zMin, zMax)
	Combine(groups)
	Decimate(groupList)
	Deviation(referenceGroupID, targetGroupID, exportFile, pointIDs, targetPoints)
	ErodeSelected()
	Export(outputDir, ext)
	ExportGroups(outputDir, ext, groups)
	Finalize(groups)
	FineAlign(groups, type)
	GetMarkers(groupID)
	GetMeshDetails(groupID)
	GetTransformation(groupID)
	Import(fileName, markers)
	MeshClean()
	NewTransformationMatrix()
	Process(groupID, generateType)
	ProcessGroups(groups, generateType)
	ReprojectUVTexture(referenceID, targetID, txtWidth, txtHeight)
	SetCleanUpType(cleanUpType)
	SetPresetTransform(groups)
	SetTransformation(groupID, matrix)
	SmoothSelected()
	UnCombine(groupID)

	Projector
	HDI_Advance_SetProjectorBrightness(scannerName, brightness)
	HDI_Advance_ShowImage(scannerName, imageFileName)

	Projects
	CloseProject()
	DeleteProject(name)
	DeleteProjectPath(dir)
	GetProjectNames()
	GetProjectsPath()
	LoadProject(name)
	LoadProjectPath(dir)
	NewProject(name)
	NewProjectPath(dir)
	SaveProject()

	Rotary
	GetNumMotors()
	IsRotaryCalibrated(scannerName)
	IsRotaryConnected()
	Rotary360Scan(motor, nScans, HDR)
	RotaryAlignScanner(scannerName, motor)
	RotaryCalibrate(scannerName, axis)
	RotaryCaptureCalibrationImage(scannerName)
	RotaryDeleteCalibration(scannerName)
	RotaryGetCurrAngle(motor)
	RotaryGetCurrStep(motor)
	RotaryGetStepsPerTurn(motor)
	RotaryIDs()
	RotaryMove(motor, steps)
	RotaryReset()
	RotaryRotate(motor, degrees)
	RotarySet(ID)
	RotarySetStepsPerTurn(motor, steps)

	Scanning
	ClearMarkerExposure(scannerName)
	EasyScan()
	GetMarkerExposure(scannerName)
	GetScannerExposure(scannerName)
	GetScannerGroup(scannerName)
	IsScannerConnected(scannerName)
	Scan()
	ScanHDR()
	ScannerConnect()
	SetMarkerExposure(scannerName)
	SetScannerExposure(scannerName, time)
	SetScannerExposureSize(scannerName, size)
	SetScannerGroup(scannerName, groupName)
	StartLiveScan()
	StopLiveScan()
	StopLiveScan()

	UI
	UI_InvertSelection()
	UI_Recenter()

	Various
	GetMemoryUsage()
	TranslucencyCompensation(groupID, k)

	Rotary Plugin Module
	Setup
	API
	Required Functions
	int PRC_BuildRotaryList()
	char* PRC_GetRotaryID(int index)
	BOOL PRC_IsConnected(const char* ID)
	BOOL PRC_GetNumMotors(const char* ID, int& motors)
	BOOL PRC_GetCurrStep(const char* ID, int motor, int& step)
	BOOL PRC_GetStepsPerTurn(const char* ID, int motor, int& steps)
	BOOL PRC_SetStepsPerTurn(const char* ID, int motor, int steps)
	BOOL PRC_Move(const char* ID, int motor, int steps)
	void PRC_Stop()
	BOOL PRC_GetMaxSpeed(const char* ID, int motor, double& speed)
	BOOL PRC_SetMaxSpeed(const char* ID, int motor, double speed)

	Optional Functions
	BOOL PRC_Rotate(const char* ID, int motor, double degrees)
	BOOL PRC_GetCurrAngle(const char* ID, int motor, double& angle)
	BOOL PRC_Reset(const char* ID)

	C/C++ Specifics
	C# Specifics
	Rotary Protocol
	General Rotary Communication Protocol
	Commands
	V
	SmMxxx
	ImMxxx
	DmCWLO
	DmCWHi
	EmHALT

	Rotary Sample Command Sequence

	3D3 File Format
	Version 8 file format
	Version 7 file format
	Version 6 file format
	Version 5 file format
	Version 4 file format

	FAQ / Troubleshooting
	Licensing
	My license failed to activate, what do I do?

	Setup and Calibration
	Why does it take a long time during the Finding Corners phase of a lens captu...
	Calibration board reflects light onto the camera(s)
	When doing close scans, my exposure is too bright even with the lens f-stop a...
	Which type (black-and-white or gray) of calibration board should I use to cal...

	Cameras
	Can I 3D scan with digital DSLR cameras, HD camcorders, or web cameras?
	Can I scan with a non-matching pair of cameras?
	Why can't I just set the aperture to the widest setting (lowest f-number) pos...
	My Canon Digital Camera is not being recognized by Windows 7 N 64-bit
	My uEye camera is functioning slower than expected and is not performing prop...
	FlexScan3D crashes or my cameras won't respond when I plug in Firewire cameras

	Windows 10
	Windows 10 doesn't install the camera drivers
	Does Windows 10 support Nikon cameras?

	Scanning
	No Data
	Noisy Data
	Wave Patterns
	Misaligned Textures
	Markers

	Tutorial Videos
	Glossary

